BEAVERDAM CREEK STREAM RESTORATION PROJECT

ANNUAL MONITORING REPORT FOR 2007-2008 (YEAR 2)

Project Number: D05016-1

Submitted to:

NC Ecosystem Enhancement Program 2728 Capital Blvd, Suite 1H 103 Raleigh, NC 27604

December, 2008

Prepared for: River Works, Inc.

8000 Regency Parkway Suite 200 Cary, NC 27511 Prepared by: Michael Baker Engineering, Inc.

1447 South Tryon St., Ste. 200 Charlotte, NC 28203

TABLE OF CONTENTS

TITL	E PAGE	
TABI	LE OF CONTENTS	i
EXEC	CUTIVE SUMMARY	1
1.0	PROJECT BACKGROUND	2
1.1	Project Location	
1.2	Mitigation Goals and Objectives	
1.3	Project Description and Restoration Approach	
1.4	Project History and Background	
1.5	Project Plan	8
2.0	VEGETATION MONITORING	8
2.1	Soil Data	
2.2	Description of Species and Monitoring Protocol	9
2.3	Vegetation Success Criteria	9
2.4	Results of Vegetative Monitoring	10
2.5	Vegetation Observations	12
2.6	Vegetation Problem Areas	
2.7	Vegetation Photos	12
3.0	STREAM MONITORING	12
3.1	Description of Stream Monitoring	12
3.2	Stream Restoration Success Criteria	13
3.3	Bankfull Discharge Monitoring Results	13
3.4	Stream Monitoring Data and Photos	14
3.5	Stream Stability Assessment	
3.6	Cross-section, Longitudinal Profile, and Bed Material Analysis Monitoring Results	
3.7	Areas of Concern	16
4.0	HYDROLOGY	16
5.0	CONCLUSIONS AND RECOMMENDATIONS	18
6.0	WILDLIFE OBSERVATIONS	18
7.0	REFERENCES	19

APPENDICES

- APPENDIX A Project Photo Log
- APPENDIX B Stream Monitoring Data
- APPENDIX C As-built Plan Sheets
- APPENDIX D Baseline Stream Summary for Restoration Reaches
- APPENDIX E Morphology and Hydraulic Monitoring Summary Year 2 Monitoring

LIST OF TABLES

- Table 1.Project Mitigation Approach
- Table 2.Project Activity and Reporting History
- Table 3.Project Contact Table
- Table 4.Project Background
- Table 5.Soil Data for Project
- Table 6.Tree Species Planted
- Table 7.Year 2 Stem Counts for Each Species Arranged by Plot
- Table 8.Verification of Bankfull Events
- Table 9.
 Categorical Stream Feature Visual Stability Assessment
- Table 10.
 Comparison of Historic Rainfall to Observed Rainfall
- Table 11.Hydrologic Monitoring Results for Year 2

LIST OF FIGURES

Figure 1.	Site Vicinity Map
Figure 2.	Site Topographic Map
Figure 3.	Restoration Summary Map
Figure 4.	Stage Recorder Locations
Figure 5.	Historic Average vs. Observed Rainfall

EXECUTIVE SUMMARY

This Annual Report details the monitoring activities during the 2008 growing season on the Beaverdam Creek Stream Restoration Site ("Site"). Construction of the Site, including planting of trees, was completed in March 2007. In order to document project success, twenty-four vegetation monitoring plots, eighteen permanent cross-sections, 3,000 linear feet (LF) of longitudinal profile survey, and two automated stage recorders were installed and assessed across the restoration Site. The 2008 data represents results from the second year of vegetation and hydrologic monitoring for streams.

Prior to restoration, stream and buffer functions on the Site were historically impaired as a result of heavy land timbering and subsequently farmed aggressively. Recently some areas have been reforested within the project site, but it has continued to be actively farmed and grazed or converted to medium density residential developments. After construction was finalized the project restored or enhanced 13,203 linear feet (LF) of channelized stream on two unnamed tributaries of Beaverdam Creek: UT1 and UT2, and preserved an additional 1,641 LF of Beaverdam Creek and 962 LF of UT2 to total 15,806 LF of restored, enhanced, or preserved stream.

Weather station data from the for NRCS National Climate and Water Center (Charlotte WSO AP WETS Station in Mecklenburg County – NC 1690) and the USGS Water Data for North Carolina (USGS 35090308100454 Withers Cove in Mecklenburg County, NC) were used to document precipitation amounts. For the 2008 growing season, March 2008 through October 2008 rainfall was recorded as below normal except for during August when rainfall was recorded higher than the 70 percentile mark.

Twenty-four monitoring plots that are 10 meter by 10 meters or 0.025 of an acre in size were used to assess survivability of the woody vegetation planted on Site. They are randomly located to represent the different zones within the project. The vegetation monitoring indicated a survivability range of 280 stems per acre to 680 stems per acre with an overall average of 483 stems per acre. Overall, the Site is on track for meeting the initial vegetation survival criteria of 320 stems per acre surviving after the third growing season and the final success criteria of 260 trees per acre by the end of year five.

In general, dimension, pattern, profile and in-stream structures remained stable during the first growing season. Remnant bed scour noted in Year 1 has remained largely unchanged through Year 2 along UT1. A few pools along UT1 experienced bed scour which is expected. The areas of pool scour are the result of a large storm event that coincided with the one bankfull event that occurred in August of 2008.

1.0 PROJECT BACKGROUND

The Beaverdam Creek site is located within the extraterritorial jurisdiction (ETJ) of the City of Charlotte, Mecklenburg County, and lies within the Catawba River Basin (Figure 1). The site lies within North Carolina Department of Water Quality (NCDWQ) sub-basin 03-08-34 and U.S. Geologic Survey (USGS) hydrologic unit 03050101170040. The recent land use of the site consists of agriculture and medium density residential development.

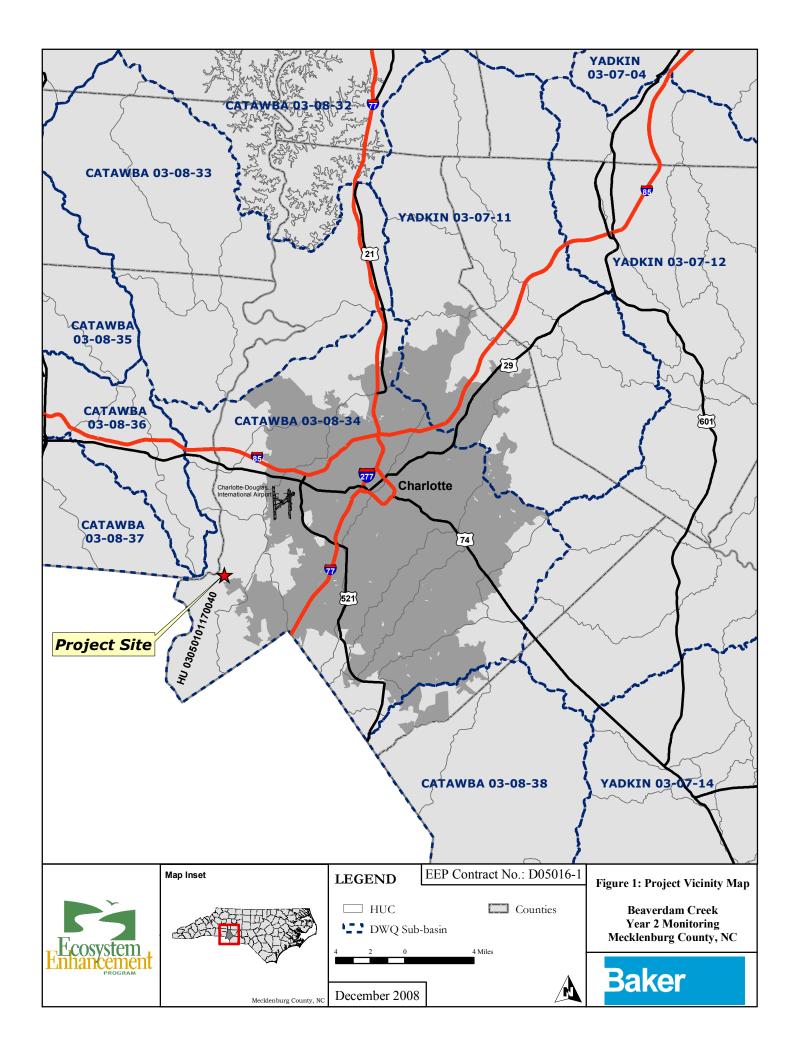
The project involved the restoration, enhancement and preservation of 15,806 LF of stream along Beaverdam Creek (the mainstem) and two unnamed tributaries (UT1 and UT2).

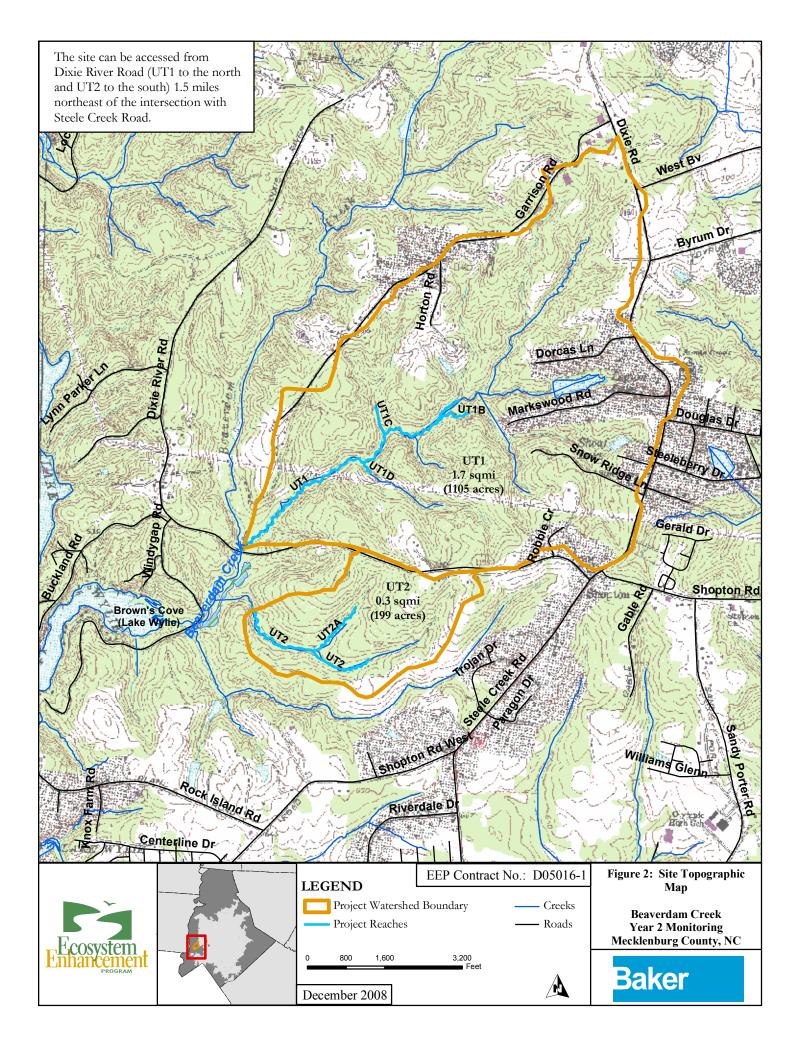
1.1 Project Location

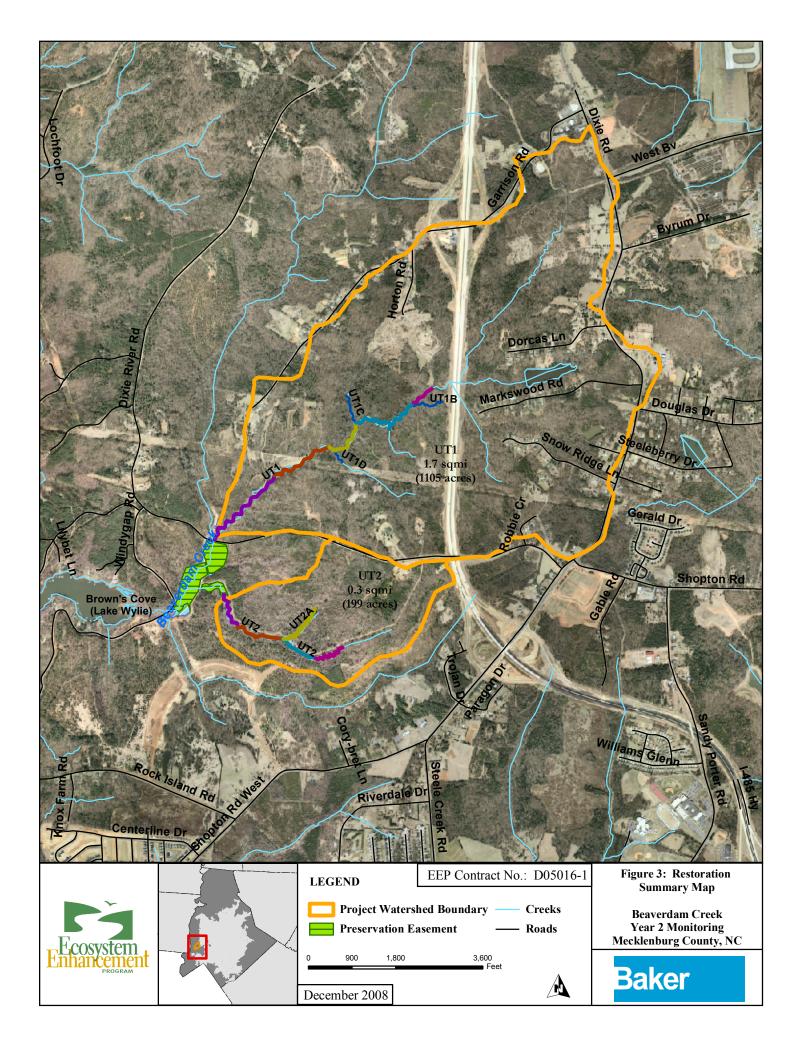
The Beaverdam Creek sited is located approximately 3 miles southwest of the Charlotte-Douglas International Airport. The site extends from the newly constructed Interstate 485 corridor to Brown's Cove of Lake Wylie, an impounded reservoir on the Catawba River. The site can be accessed from Dixie River Road (UT1 to the north and UT2 to the south) 1.5 miles northeast of the intersection with Steele Creek Road. See Figures 1 and 2 for an overview of the project site.

1.2 Mitigation Goals and Objectives

The specific goals for the Beaverdam Creek Restoration Project were as follows:


- Preserve/Restore/Enhance 15,806 LF of stream channel.
- Create geomorphically stable stream channel and floodplain conditions along UT1, UT2 and their associated tributaries within the Beaverdam Creek watershed.
- Improve the local hydrology through increased groundwater recharge, groundwater storage, and hydrologic connectivity between the channel and the adjacent floodplain.
- Improve water quality in the Beaverdam Creek watershed by increasing dissolved oxygen concentrations and reducing nutrient and sediment loads.
- Improve aquatic and riparian terrestrial habitat through improved hydraulic and biologic diversity.


1.3 Project Description and Restoration Approach


For analysis and design purposes, Beaverdam Creek and the two unnamed tributaries (UT1 and UT2) were subdivided into 15 individual reaches based on their hydrologic and geomorphic characteristics. The mainstem of Beaverdam Creek consists of only 1 of the 15 design reaches, where only preservation and no restoration activities were proposed. The remaining 14 reaches exist within UT1 (8 reaches) and UT2 (6 reaches). Among these 14 reaches, 12 were scheduled for restoration, the upstream reach of UT1 was scheduled for enhancement and the downstream reach of UT2 was scheduled for preservation. All reach locations are shown in Figure 3. The following describes the site's preconstruction conditions.

The project extents on UT1 began at I-485 flowing from the northeast direction. UT1 was divided into 5 reaches starting in the upstream with Reach 1 and continuing downstream to Reach 5 and changing designation at tributary confluences or at significant grade breaks. The three tributary confluences were included within the design parameters on UT1 and were identified as UT1B, UT1C, and UT1D from the upstream confluence and continuing downstream.

UT2 watershed abuts the UT1 watershed to the south, is bordered by Dixie River Road, and generally flows in the southwest direction. The mainstem of UT2 was divided into four reaches starting upstream at Reach 1 and continuing downstream to Reach 4. One tributary confluence, UT2A, was included within the design parameters of UT2. Reach UT2A, upstream of station 10+00, consisted only of a non-

disturbance area (not for credit). The downstream section of UT2A, from a headcut at station 10+00 to its confluence at the terminus of Reach 2, was 1138 LF with a channel slope of 1.4 percent.

Preservation was proposed for reaches within the project area that were currently in stable, functioning condition and did not warrant restoration. The two reaches proposed for preservation were along the mainstem of Beaverdam and the downstream section of UT2. The reach along the mainstem of Beaverdam Creek proposed for preservation had reach length of 1,641 LF. It began at the confluence with UT1 and extended downstream to the confluence of UT2. The reach along the mainstem of UT2 proposed for preservation had a length of 962 LF. It began immediately downstream of UT2 Reach 4 and ended at its confluence with the mainstem of Beaverdam Creek.

Throughout most of UT1, the restoration approach identified the existing evolutionary process and established a naturally successional stable C/E-type stream channel. Additionally, soil bioengineering, structural reinforcement, and revetments were applied to promote stability immediately following construction when the stream was most vulnerable. Given the wide floodplain, relatively flat slopes, generally stable nature of the soil, and favorable growing conditions at the site, this restoration approach was an achievable goal. Removal of the majority of invasive species and planting of native vegetative species throughout the existing riparian buffer complemented the channel restoration and promoted climax successional habitat.

Similar to UT1, the restoration approach throughout UT2 entailed establishing a successional C/E-type stream channel while maintaining the ability to accommodate subsequent natural channel evolution towards an E-type channel, as warranted by future influences to the discharge and sediment regime. This was accomplished through application of a Priority 1 design throughout with short segments of Priority 2 design to tie into the incised channels.

	Beaverdam Creek Restoration Site: Project No. D05016-1								
Project Segment or Reach ID	زلان Existing Footage/Acre age Mitigation Type * Approach** Linear Footage or Acreage Mitigation Mitigation Units Stationing		Stationing	Comment					
UT1 (Reach 1)	542	Е	EI	567	1.5:1	378	10+00 - 15+67	Low slope, minimal meander and floodplain benching.	
UT1 (Reach 2-5)	5796	R	P1	6,310	1:1	6,310	15+67 - 78+77	The beginning of channel utilizes the existing wide, flat floodplain then narrows through the valley and straightens through the Duke Power easement and connects into the mainstem of Beaverdam through a wide, flat floodplain.	
UT1B	743	R	P2	778	1:1	778	10+00 - 17+78	The valley is pinched so floodplain grading will create adequate benching.	
UT1C	744	R	P1	624	1:1	624		Step-pool design dominated by log drops. The valley is narrow resulting minimal meander.	
UT1D	323	R	P1	338	1:1	338	10+00 - 13+38	The channel will have the appropriate belt width throughout the ample floodplain. A series of drop structures at the end of the reach will tie into UT1.	
UT2	3130	R	P1	3,448	1:1	3,448	10+00 - 44+48	Increase sinuosity, pool development, and reestablish connection with the floodplain and construct in channel step-pools in areas where the valley is confined and steep.	
UT2A	886	R	P1	1,138	1:1	1,138	10+00 - 21+38	A step-pool channel will be constructed in the areas where the valley is confined and steep. Transition connections constructed between the constructed channel and the existing channels.	
Beaverdam Creek	1641	P		1,138	1:5	328	-	channel and the existing channels.	
UT2	962	P		962	1:5	192	-	-	
Total lin	ear ft of c	hannel res	stored or	15,806			-		
Mitigation U	nit Summ	ation for S	Streams:	13,534					
* R = R	estoration		**	P1 = Priori	ty I				
$\mathbf{E} = \mathbf{E}_{\mathbf{i}}$	nhancemer	nt		P2 = Priori	ty II				
$\mathbf{P} = \mathbf{P}\mathbf{r}$	reservation			P3 = Priori	ty III				

Table 1. Project Mitigation Approach

1.4 Project History and Background

The chronology of the Beaverdam Creek Restoration Project is presented in Table 2. The contact information for all designers, contractors, and relevant suppliers is presented in Table 3. Relevant project background information is presented in Table 4.

Beaverdam Creek Restoration Site: Project No. D05016-1							
Activity or Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery				
Restoration Plan Prepared	Nov-05	N/A					
Restoration Plan Amended	Dec-05	N/A					
Restoration Plan Approved	Dec-05	N/A					
Final Design – (at least 90% complete)	Dec-05	N/A					
Construction Begins	May-06	N/A	Jun-06				
Temporary S&E mix applied to entire project area	N/A	N/A	Jan-07				
Permanent seed mix applied to entire project area	Mar-06	N/A	Jan-07				
Planting of live stakes	Nov-06	N/A	Jan-07				
Planting of bare root trees	Nov-06	N/A	Jan-07				
Survey of As-built conditions (Year 0 Monitoring- baseline)	Jan-07	Mar-07	Apr-07				
Repair work							
Year 1 Monitoring	Dec-07	Nov-07	Dec-07				
Year 2 Monitoring	Dec-08	Nov-08	Dec-08				
Year 3 Monitoring	Dec-09	Unknown	Unknown				
Year 4 Monitoring	Dec-10	Unknown	Unknown				
Year 5 Monitoring	Dec-11	Unknown	Unknown				

Table 2. Project Activity and Reporting History

Table 3. Project Contact

Beaverdam Creek Restoration Site: Project No. D05016-1						
Full Service Delivery Contractor						
River Works, Inc.	8000 Regency Parkway, Suite 200					
River works, me.	Cary, NC 27518					
	Contact:					
	Will Pedersen, Tel. 919-459-9001					
Designer						
Michael Baker Engineering, Inc.	8000 Regency Parkway, Suite 200					
Whenaer Daker Engineering, me.	Cary, NC 27518					
	Contact:					
	Kevin Tweedy, Tel 919-463-5488					

Beaverdam Creek Restoration Site: Project No. D05016-1						
Construction Contractor						
River Works, Inc.	8000 Regency Parkway, Suite 200					
Kiver works, me.	Cary, NC 27518					
	Contact:					
	Will Pedersen, Tel. 919-459-9001					
Planting Contractor						
River Works, Inc.	8000 Regency Parkway, Suite 200					
Kiver works, me.	Cary, NC 27518					
	Contact:					
	Will Pedersen, Tel. 919-459-9001					
Seeding Contractor						
River Works, Inc.	8000 Regency Parkway, Suite 200					
Kiver works, me.	Cary, NC 27518					
	Contact:					
	Will Pedersen, Tel. 919-459-9001					
Seed Mix Sources	Mellow Marsh Farm, 919-742-1200					
Nursery Stock Suppliers	Mellow Marsh Farm, 919-742-1200					
	International Paper, 1-888-888-7159					
Monitoring Performers						
Michael Baker Engineering, Inc.	1447 S. Tryon Street, Suite 200					
Witchael Baker Engineering, Inc.	Charlotte, NC 28203					
Stream Monitoring Point of Contact:	Ian Eckardt, Tel.704-334-4454					
Vegetation Monitoring Point of						
Contact:	Ian Eckardt, Tel. 704-334-4454					

Table 3. Project Contact

Table 4. Project Background

Beaverdam Creek Restoration Site: Project No. D05016-1							
Project County:	Mecklenburg County, NC						
Drainage Area:							
UT1 (Reach 1)	0.70 mi ²						
UT1 (Reach 2-5)	1.73 mi ²						
UT1B	0.34 mi^2						
UT1C	0.15mi^2						
UT1D	0.16 mi^2						
UT2	0.3 mi^2						
UT2A	0.1 mi^2						
Estimated Drainage % Impervious Cover:							
UT1 (Reach 1)	15%						
UT1 (Reach 2-5)	12%						
UT1B	10%						
UT1C	5%						
UT1D	21%						
UT2	4%						
UT2A	2%						

Beaverdam Creek Restoration Site	: Project No. D05016-1
Stream Order:	
UT1 (Reach 1)	1
UT1 (Reach 2-5)	2
UT1B	1
UT1C	1
UT1D	1
UT2	1
UT2A	1
Physiographic Region	Piedmont
Ecoregion	Southern Outer Piedmont
Rosgen Classification of As-Built	
UT1 (Reach 1)	C/E
UT1 (Reach 2-5)	C/E
UT1B	C/E
UT1C	C/E
UT1D	C/E
UT2	C/E
UT2A	C/E
	Riverine, Upper Perennial,
Cowardin Classification	Unconsolidated Bottom, Cobble-
	Gravel
Dominant Soil Types	
UT1 (Reach 1)	МО
UT1 (Reach 2-5)	MO, DaD, CeD2, PaE
UT1B	МО
UT1C	MO, PaE, CeD2
UT1D	MO, PaE, CeD2
UT2	MO, CeD2
UT2A	МО
	Spencer Creek, UT to Spencer
	Creek, McDowell Park, Latta
	Plantation, McClintock Creek
Reference site ID	(McNair & Stockwood), UT to
	Cleghorn, UT to Lake Jeanette,
	UT to Big Lost Cove
USGS HUC for Project and Reference sites	3050101170040
NCDWQ Sub-basin for Project and Reference	03-08-34
NCDWQ classification for Project and Reference	С
Any portion of any project segment 303d listed?	No
Any portion of any project segment upstream of a	No
303d listed segment? Reasons for 303d listing or stressor?	N/A

Table 4. Project Background Table

1.5 Project Plan

Plans depicting the as-built conditions of the major project elements, location of permanent monitoring cross-sections, and locations of permanent vegetation monitoring plots are presented in Appendix C of this report.

2.0 VEGETATION MONITORING

2.1 Soil Data

The soil data for the Site are presented in Table 5.

Beaverdam Creek Restoration Site: Project No. D05016-1								
Series	Max Depth (in)	% Clay on Surface	ĸ	т	OM %			
Cecil Sandy Clay Loam (CeD2)	80	20-35	0.28	5	0.5-1			
Monacan Loam (MO)	80	7-27	0.43	5	2-3			
Davidson sandy clay loam (DaD)	75	20-35	0.28	5	0.5-2			
Pacolet sandy loam (PaE)	62	8-20	0.2	5	0.5-2			
Pacolet sandy loam (PaF)	62	8-20	0.2	5	0.5-2			

Table 5. Soil Data for Project

(USDA, 2006. Official Soil Series Descriptions: http://soils.usda.gov/technical/classification/osd/index.html)

General taxonomy of soils:

<u>Cecil:</u> The Cecil series consists of well-drained soils with moderate permeability on and near floodplains. They formed in residuum weathered felsic igneous and metamorphic rock, such as granite. Slopes range from 8 to 15 percent (USDA, 2006. "Soil Taxonomy").

<u>Monacan</u>: Soils of the Monacan series are deep, moderately well and somewhat poorly drained with moderate permeability. They formed in recent alluvial sediments of the Piedmont and Coastal Plain. Slopes are commonly less than 2 percent (USDA, 2006. "Soil Taxonomy").

<u>Pacolet:</u> The Pacolet series consists of very deep, well drained, moderately permeable soils that formed in material weathered mostly from acid crystalline rocks of the Piedmont uplands. Slopes commonly are 15 to 25 percent but range up to 2 to 60 percent (USDA, 2006. "Soil Taxonomy").

<u>Davidson:</u> The Davidson series consists of very deep, well drained moderately permeable soils that formed in materials weathered from dark colored rocks high in ferromagnesian minerals. These soils are on gently sloping to moderately steep uplands in the Piedmont. Slopes are commonly 2 to 15 percent but range up to 25 percent (USDA, 2006. "Soil Taxonomy").

2.2 Description of Species and Monitoring Protocol

The Site was planted in bottomland hardwood forest species in early – mid March of 2007. There were twenty-four vegetation-monitoring plots established throughout the planting areas. The following tree species were planted in the restoration area:

Beaverdam Creek Restoration Site: Project No. D05016-1							
ID	Scientific Name	Common Name	FAC Status				
1	Alnus serrulata	Tag Alder	FACW+				
2	Asimina triloba	Paw paw	FAC				
3	Cercis canadensis	Redbud	FACU				
4	Celtis laevigata	Sugarberry	FACW				
5	Cephalanthus occidentalis	Buttonbush	OBL				
6	Cornus amomum	Silky Dogwood	FACW+				
7	Cornus florida	Flowering Dogwood	FACU				
8	Diospyros virginiana	Persimmon	FAC				
9	Fraxinus pennsylvanica	Green Ash	FACW				
10	Juglan nigra	Black Walnut	FACU				
11	Liriodendron tulipiferra	Tulip poplar	FACW				
12	Platanus occidentalis	Sycamore	FACW-				
13	Nyssa sylvatica	Blackgum	FAC				
14	Quercus michauxii	Swamp chestnut oak	FACW-				
15	Quercus phellos	Willow oak	FACW-				
16	Quercus rubra	Red oak	FACU				
17	Sambucus candensis	Elderberry	FACW-				
18	Viburnum dentatum	Arrow-wood viburnum	FAC				

 Table 6. Tree Species Planted

Beaverdam Creek Restoration Site: Project No. D05016-1

(USDA, 2007: <u>http://plants.usda.gov</u>)

The following monitoring protocol was designed to predict vegetative survivability. Twenty-four plots were established throughout the Beaverdam Creek Site. The number of sites was based on the species/area curve method and their location was based on EEP monitoring guidance. The size of individual quadrants was 100 square meters for woody tree species, 25 square meters for shrubs, and 1 square meter for herbaceous vegetation. The locations of the vegetation plots are shown on the as-built plan sheets in Appendix C.

Individual quadrant data provided includes density and coverage quantities. Relative values were calculated, and importance values were determined. Individual seedlings were marked to ensure that they can be found in succeeding monitoring years. Mortality was determined from the difference between the previous year's living, planted seedlings and the current year's living, planted seedlings.

2.3 Vegetation Success Criteria

The interim measure of vegetative success for the Site will be the survival of at least 320 3-year old planted trees per acre at the end of year three of the monitoring period. The final vegetative success

criteria will be the survival of 260 5-year old planted trees per acre at the end of year five of the monitoring period.

2.4 Results of Vegetative Monitoring

The following table presents stem counts for each of the monitoring plots. Each planted tree species is identified down the left column, and each plot is identified across the top row. The numbers on the top row correlate to the vegetation plot IDs. Trees are flagged in the field on an as-needed basis before the flags degrade. Flags are utilized, because they will not interfere with the growth of the tree. Volunteer species are also flagged during this process.

During the initial counts of species totals during the as-built monitoring report, some tree species were unidentifiable (no buds or leafs) and documented as *Unknown Quercus* in the stem plot counts or were labeled incorrectly. During Year 1 vegetative monitoring, three of the four *Unknown Quercus* were identified as *Quercus michauxii* and updated. Additional tree species that were labeled incorrectly have been updated and coded within Table 7 to represent the correction.

The average stem count per acre for Year 2 Monitoring was 483. The range of stem counts throughout the 24 vegetative monitoring plots was from 280 - 680. The current survivability rate for Year 2 is 77.3%. The data reflects that the overall site is on trajectory for meeting the minimum success interim criteria of 320 trees per acre by the end of year three and the final success criteria of 260 trees per acre by the end of year three and the final success criteria of 260 trees per acre by the end of year three and the final success criteria of 260 trees per acre by the end of year five.

No volunteer species were noted in any of the Site's vegetation plots, or were too small to verify. If any woody volunteer species are observed in subsequent monitoring years they will be flagged and added to the overall stems per acre assessment of the Site.

								Bear	verda	m Cro	eek R	estora	tion S	Site :]	Proje	ct No.	D050	16-1									
													ots												As-	Vien 1	
									UT1				_							_	UT2				built	Year 1 Totals	
Tree Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	1	2	3	4	5	6	7	Totals	Totals	
Alnus serrulata									0																2	2	
Asimina tuiloba								3	4		2	3	1												21	18	
Cercis canadensis									0						1		0								3	3	
Celtis laevigata	1				1									1											6	3	
Cephalanthus occidentalis									1																1	1	
Cornus amomum									1																1	0	
Cornus florida					0												0								2	3	
Diospyros virginiana		1													0								1		3	3	L
Fraxinus pennsylvanica	4			4	6	1	6	1			1	3	3	3	6	5		3	13		2	8	5	1	77	76	
Juglan nigra	1	1	1	1		4	1	1		7	0	2	2			0						0			31	28	
Liriodendron tulipiferra	1		1	0	0	0	2			2		3		2	0	1	2	2		1	2	0		2	36	29	
Platanus occidentalis		2		2	4	4	1	5		2				1		1	1	0		7	4		1	1	54	46	
Nyssa sylvatica	3	1	4	3		1		1				1	6		3	2	5	2		3	2		7	2	55	50	
Quercus michauxii	1	4	7	2			1	3			1	1	3	3	2	1	0	6			3	6	2	1	55	57	
Quercus phellos	1	1	2	1	1		1	1		1	4		1			4		0							20	20	
Quercus rubra							1	1						1											1	1	
Sambucus candensis																									1	0	
Vibernum dentatum									1																2	2	
Unknown Quercus													1												4	1	
Stems/plot	12	10	15	13	12	10	13	16	7	12	8	13	17	11	12	14	8	13	13	11	13	14	16	7	375	343	
Stems/acre	480	400	600	520	480	400	520	640	280	480	320	520	680	440	480	560	320	520	520	440	520	560	640	280			

Table 7. Year 2 Stem Counts for Each Species Arranged by Plot

Tree # 3-7 was mislabelled as *Platanus occidentalis* in As-built Initial Counts

Tree # 3-16 was mislabelled as *Liriodendron tulipifera* in As-built Initial Counts

Tree # 7-10 was mislabelled as *Asimina tuiloba* in As-built Initial Counts

Tree # 7-2, -3, -4 were mislabelled as *Fraxinus pennsylvanica* in As-built Initial Counts

Tree # 14-5, -8, -10 were labelled as unknown in As-built Initial Counts

Tree # 7-21 was labelled as *Liriodendron tulipifera* in the field but was not added in the As-built Initial Counts

Tree # 7-4 was mislabelled as *Quercus michauxii* in the Year 1 Monitoring Counts

Tree # 16-6 was mislabelled as *Nyssa sylvatica* in the Year 1 Monitoring Counts

Tree # 9-1 was incorrectly counted as *Cercis canadensis* instead of *Cornus amomum* in the Year 1 Monitoring Counts

Tree # 8-10 was mislabelled as *Quercus phellos* in the As-built Initial Counts

Tree # 1-6 was mislabelled as *Quercus phellos* in the As-built Initial Counts

Year 2 Totals	% Survival
0	0.0
13	61.9
1	33.3
3	50.0
1	100.0
1	100.0
0	0.0
2	66.7
75	97.4
21	67.7
21	58.3
36	66.7
46	83.6
47	85.5
18	90.0
3	300.0
0	0.0
1	50.0
1	25.0
290	77.3
483	Average

2.5 Vegetation Observations

During September 2008 minor repairs were made to the stream-side vegetation. The repairs included the re-staking of matting at Stations 42+15, 48+40, 54+20, 55+92, and 68+60 along UT1. A portion of torn matting at Station 18+00 was re-matted. All of these locations will have live stakes installed during the winter of 2008/2009. Station 11+50 on UT1B and the surrounding floodplain were reseeded where a Department of Transportation fencing crew drove across the channel as they installed fencing along the 485 right-of-way immediately above the project site. Reseeding also took place around Station 10+00 of UT1C to address a small terrace scarp in the floodplain. Trees that had fallen across the channel were removed on UT2 at Station 17+40 and UT2A at Station 16+10. In both cases no damage was done to the stream. Beyond these minor repairs, the stream-side and floodplain vegetation has continued to successfully establish throughout the project site.

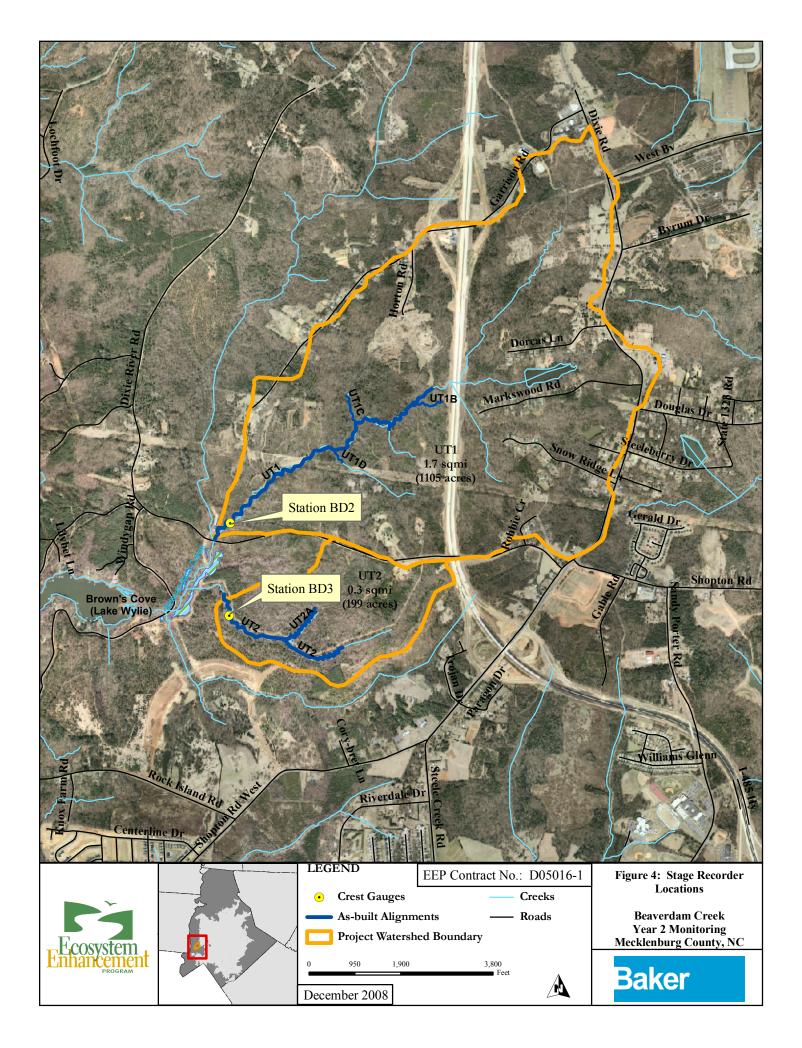
2.6 Vegetation Problem Areas

At this time, there seem to be no invasive species problem areas throughout the project site. However, though none seem to be posing any problems, invasive species can very quickly affect the survivability of the planted stems the weedy species should be maintained aggressively to prevent any major mortality issue.

2.7 Vegetation Photos

Photos of the project showing the on-site vegetation are included in Appendix A of this report.

3.0 STREAM MONITORING


3.1 Description of Stream Monitoring

To document the stated success criteria, the following monitoring program was instituted following construction completion on the Beaverdam Creek Restoration Project:

Bankfull Events: The occurrence of bankfull events within the monitoring period was documented by the use of two automated stage recorders. The University of North Carolina (UNCC) installed and monitored the readings from both stage recorders. Gauging station BD2 was installed on UT1 and gauging station BD3 was installed on UT2. Each data logger recorded the watermark at 15 minute intervals at each Site and was checked at each Site visit to determine if a bankfull event had occurred. Photos of the bankfull events were not available from UNCC. Figure 4 shows the locations of the stage recorders.

Cross-Sections: Two permanent cross-sections were installed per 1,000 linear feet of stream restoration work, with one located at a riffle cross-section and one located at a pool cross-section. Twenty four total cross sections were established. Each cross-section was marked on both banks with permanent pins to establish the exact transect used. A common benchmark was used for cross-sectional survey included points measured at all breaks in slope, including top of bank, bankfull, inner berm, edge of water, and thalweg, if the features are present. Riffle cross-sections were classified using the Rosgen stream classification system (Rosgen, 1994). Permanent cross-sections for 2008 (Year 2) were surveyed in November 2008.

Longitudinal Profiles: A representative longitudinal profile was surveyed for 2008 (Year 2). The initial 3000 linear feet of profile was collected for the mainstem reach of UT1. Measurements included thalweg, water surface, bankfull, and top of low bank. Each of these measurements was taken at the head of each feature (e.g., riffle, pool, glide). In addition, maximum pool depth was recorded. All survey was tied to a single permanent benchmark.

Bed Material Analysis: Pebble counts were conducted for the permanent cross-sections (100 counts per cross-section) on the project reaches. Pebble count data was plotted on a semi-log graph and are included in Appendix B.

Photo Reference Stations: Photographs were used to visually document restoration success. Fifty-one (51) reference stations were established to document conditions at the constructed grade control structures across the Site. These photos are provided in Appendix A. The GPS coordinates of each photo station were noted as additional reference to ensure the same photo location was used throughout the monitoring period. These stations are included in the As-built Plan Sheets in Appendix C. Reference photos were taken once per year.

Each streambank was photographed at each permanent cross-section photo station. For each streambank photo, the photo view line followed a survey tape placed across the channel, perpendicular to flow (representing the cross-section line). The photograph was framed so that the survey tape is centered in the photo (appears as a vertical line at the center of the photograph), keeping the channel water surface line horizontal and near the lower edge of the frame. These photos are presented along with the cross-section monitoring data in Appendix B.

3.2 Stream Restoration Success Criteria

The approved Mitigation Plan requires the following criteria be met to achieve stream restoration success:

- *Bankfull Events*: Two bankfull flow events must be documented within the five-year monitoring period. The two bankfull events must occur in separate years.
- *Cross-Sections:* There should be little change in as-built cross-sections. If changes to channel crosssection take place, they should be minor changes representing an increase in stability (e.g., settling, vegetative changes, deposition along the banks, or decrease in width/depth ratio).
- *Longitudinal Profiles:* The longitudinal profiles should show that the bedform features are remaining stable (not aggrading or degrading). The pools should remain deep with flat water surface slopes and the riffles should remain steeper and shallower than the pools.
- Bed Material Analysis: Pebble counts should indicate maintenance of bed material.
- *Photo Reference Stations*: Photographs will be used to subjectively evaluate channel aggradation or degradation, bank erosion, success of riparian vegetation and effectiveness of erosion control measures. Photos should indicate the absence of developing bars within the channel, no excessive bank erosion or increase in channel depth over time, and maturation of riparian vegetation.

3.3 Bankfull Discharge Monitoring Results

On-site data loggers documented the occurrence of one bankfull flow event during the second year (2008) of the post-construction monitoring period (Table 8). The bankfull flow event measurements documented by the data loggers during Year2 monitoring were stage heights of 5.92 for BD2 and 0.86 feet for BD3.

Tuble 6. Vermeuton of Dunktur Livents								
Beaverdam Creek Restoration Site: Project No. D05016-1								
Station Number	Date of Data Collection	Date of Occurence of Bankfull Event	Method of Data Collection	Gage Height (feet)				
BD2	N/A	8/26/2008	Datalogger	5.92				
BD3	N/A	8/26/2008	Datalogger	0.86				

Table 8. Verification of Bankful Events

3.4 Stream Monitoring Data and Photos

A photo log of the project showing each of the fifty-one (51) permanent photo locations is included in Appendix A of this report. Survey data and photos from each permanent cross-section are included in Appendix B of this report.

3.5 Stream Stability Assessment

Table 9 presents a summary of the results obtained from the visual inspection of in-stream structures performed during Year 2 of post-construction monitoring. The percentages noted are a general overall field evaluation of how the features were performing after repair work had been completed at the time of the last photo point survey on December 2, 2008. These percentages are solely based on the field evaluator's visual assessment at the time of the site visit.

Visual observations of the various structures throughout Year 2 growing season indicated that structures were functioning as designed and holding their elevation grade. Root wads placed on the outside of meander bends provided bank stability and in-stream cover for fish and other aquatic organisms. Cover logs placed in meander pool areas allowed scour to keep pools deep and provide cover for fish. During Year 1, scour was observed immediately underneath a few of the cover logs and other log vane structures. This was observed at stations 41+50, 53+80, 56+00, 56+50, and 63+90 of UT1. Isolated pockets of bed scour were also observed at stations 50+15, 56+00, 56+50, and 63+90 of UT1. This minor amount of scour was the result of the large storm event that dropped 3.5 inches of rain on the project site shortly after construction was completed. The channel at these stations and throughout the project has remained largely unchanged through Year 2.

In September of 2008 minor channel repair work was performed. The work included resealing the log sill at station 56+50 and the removal of the log vane structure at 56+60, which had been pulled out of the right bank during a storm event. The right bank at station 56+60 was filled in. A debris jam at station 39+25 on UT2 was also removed. The debris jam caused no damage to the channel.

Observations during the site visit on December 2, 2008 noted that log sill structures at stations 12+05, 25+90, 56+50, and 69+00 on UT1 had been bypassed either by scour under the structure or failure of the fabric seal. This is reflected in the slightly lower performance score of 95.

Table 7: Categorical Stream Feature Visual Stability Assessment								
Beaverdam Creek Restoration Site : Project No. D05016-1								
		Performance Percentage						
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05		
Riffles	100%	100%	100%					
Pools	100%	100%	100%					
Thalweg	100%	100%	100%					
Meanders	100%	100%	100%					
Bed General	100%	99%	99%					
Vanes / J Hooks etc.	100%	97%	95%					
Wads and Boulders	100%	100%	100%					

Table 9. Categorical Stream Feature Visual Stability Assessment

3.6 Cross-section, Longitudinal Profile, and Bed Material Analysis Monitoring Results

Cross Sections

Year 2 cross-section monitoring data for stream stability were collected during November 2008 and compared to as-built conditions (collected March 2007).

The twenty four permanent cross-sections along the restored channels (twelve located across riffles and twelve across pools) were re-surveyed to document stream dimension at the end of the second monitoring year (Year 2). Cross-sections are provided in Appendix B, and data from the cross-sections are summarized in Appendix E. The cross-sections show that there has been minor adjustment to stream dimension within the last year.

A couple cross-sections show point bar formation along UT1 and include cross-sections 10 and 11, which are located across pools found at the apex of a meander bend. Flow through a meander bend possesses higher conveyance velocity along its boundary with the outer bank of the bend, and lower flow velocity along its boundary with the bend's inner bank. As flow reduces, its sediment transport capacity also reduces, causing flow to drop some of its transported sediment as it slows down. Point bar formation along the inside of a meander bend indicates flow velocity vectors occurring as designed, and is therefore expected.

Year 1 observations of Cross-section 10 attributed a slight adjustment in channel geometry to aggradation along the outside bank of a meander. This slight adjustment was believed to reflect a plug of sediment deposited during the large storm event that occurred shortly after construction was completed. However, channel geometry has changed very little through Year 2 monitoring and may instead reflect a difference in where survey points where collected on the outside bank of the meander between the As-built and Year 1 surveys. Photographs of Cross-section 10 indicate that the banks of the stream are stable with vegetation.

A few cross-sections show evidence of bed scour along UT1 and include cross-sections 3, 13, 16, and 17, which are located across pools found at the apex of a meander bend. The outside of meander bends experience an increase in shear stress during large storm events that can cause scour. The project site experienced a 7.54 inch precipitation event between August 25 and 27, 2008, which likely lead to the scour in these pools. Scour and deepening of some pools is expected and has not resulted in any observed channel instability. The installation of cover logs at meander bends promotes habitat and encourages scour.

Cross-section 15 also experienced scour but unlike the other cross-sections it's located in a straight section of channel immediately upstream of a large in-stream boulder. During storm events streamflow is diverted around the boulder and has causes bed scour on the upstream side, which is seen in Cross-section 15. This change in channel geometry will be monitored but doesn't require other action.

Longitudinal Profiles

The Year 2 longitudinal profile was conducted during November 2008. The initial 3,000 LF of channel was surveyed along the mainstem of UT1. The longitudinal profile is included in Appendix B. A summary of parameters measured are provided in Appendix D. Please note that this summary represents only the portion of project that was surveyed.

The representative longitudinal profile along the restored channel was resurveyed to document stream profile at the end of monitoring Year 2. Riffle slopes and pool-to-pool spacing were calculated for Reach 1 and Reaches 2-5 of UT1. The Year 2 riffle slope for Reach 1 is 0.009 ft/ft and pool-to-pool spacing has a mean value of 54 ft. These values are on par with the design values, which are respectively 0.009 ft/ft and 44 ft. Reaches 2-5 riffle slopes range from 0.008 ft/ft to 0.018 ft/ft are also similar to their design values that range from 0.005 to 0.018 ft/ft. The Year 2 pool-to-pool spacing of Reaches 2-5 ranges from

72 to 144 ft with a mean value of 108. These values are similar to the design value range of 101 to 120 ft. Sinuosity for Reach 1 was 1.04, which is slightly lower than the Year 1 value of 1.05. The difference is the result of a five foot difference in surveyed channel length and thalweg migration. Reaches 2-5 had a sinuosity of 1.3 which is the same as that calculated in Year 1.

Profile remained largely unchanged with a few exceptions where pools had deepened due to scour. Overall pattern shows little to no change.

Bed Material Analysis

Year 2 bed material samples were collected at each permanent cross-section during November 2008. The pebble count data were plotted on a semi-log graph and will be compared with future monitoring data. Data indicates maintenance of a coarse bed in constructed riffles and a relative fining in the pools. All pebble count data are provided in Appendix B.

3.7 Areas of Concern

During Year 1 Monitoring several Best Management Practices (BMPs) were noted as areas of concern. The BMPs are located just within and immediately outside the conservation easement along UT2 and UT2A of the Restoration Project. The BMPs consist of both temporary and permanent detention ponds which are discharging stormwater into the Project Site, and a retaining wall. Locations of the BMPs are shown on the as-built plans included in Appendix C. Adjacent to the Site's property boundaries are new residential developments under construction.

During the site visit on December 2, 2008 the BMP, located within the conservation easement at the top of UT2A, had been removed and work was being done to restore the area to its existing slope. In Year 1, it was noted that discharge from the BMP adjacent to Station 20+00 along UT2 had caused some minor scour below the riffle at the log sill. The channel at station 20+00 on UT2 has remained stable through Year 2 and it appears that the BMP, which has been enlarged during Year 2, is no longer impacting the project site. Currently, none of the BMPs are impacting the restored channels. Therefore, they are no longer considered areas of concern.

4.0 HYDROLOGY

Rainfall data were collected to document the hydrologic conditions throughout the project area in the 2008 growing season. Since no rain gauges were installed within the project boundaries, monthly rainfall totals were calculated from data downloaded from the Withers Cove USGS gauge 35090308100454 in Mecklenburg County, NC. Historical rainfall data were collected from the Charlotte WSO AP WETS Station in Mecklenburg County (NC 1690) using NRCS National Water and Climate Data Center website.

Monthly rainfall data were recorded as less than the historic average for 2007-2008, expect for August, which was recorded above the 70 percentile mark. Hydrologic monitoring results are shown in Table 10 and Figure 5.

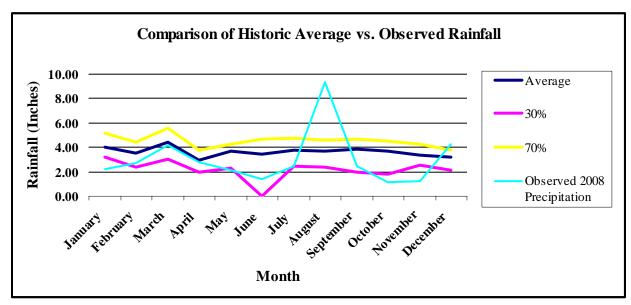

Beaverdam Creek Restoration Site: EEP Contract No. D05016-1							
Month	Average	30%	70%	Observed 2008* Precipitation			
January	4.00	3.21	5.15	2.19			
February	3.55	2.34	4.42	2.71			
March	4.39	3.01	5.54	4.14			
April	2.95	1.98	3.73	2.81			
May	3.66	2.33	4.29	2.11			
June	3.42	2.43	4.68	1.42			
July	3.79	2.49	4.76	2.48			
August	3.72	2.34	4.57	9.34			
September	3.83	2.00	4.68	2.44			
October	3.66	1.80	4.49	1.18			
November	3.36	2.51	4.24	1.2			
December	3.18	2.11	3.81	4.24			
Total Rainfall	43.51	28.55	54.36	36.26			

 Table 10. Comparison of Historic Rainfall to Observed Rainfall

(NRCS National Climate and Water Center, 2003 and USGS, 2008)

* Monthly rainfall data was calculated based on rainfall data from 12/1/07 - 11/25/08 using the nearest USGS rain gauge data (USGS 35090308100454 Withers Cove in Mecklenburg County) to the project site. (USGS, 2008)

Figure 5. Historic Average vs. Observed Rainfall

5.0 CONCLUSIONS AND RECOMMENDATIONS

Vegetation Monitoring. Vegetation monitoring efforts have calculated the range of stems per acre for each plot to be from 280 to 680 stems per acre on the 24 vegetation plots. The average number of stems per acre is 483, which is a survival rate of greater than 77%, based on the initial planting count of 625 stems per acre. Assuming that preventative methods will be used to maintain any invasive exotics, vegetation survivability should remain excellent on the Site and vegetative success criteria will be met.

Stream Monitoring. The total length of stream channel restored and/or preserved on the Site was 15,806 linear feet. This entire length was inspected during Year 2 of the monitoring period (2007) to assess stream performance. Based on the data collected, riffles, pools, and other constructed features along the restored channel are stable and functioning as designed. Minor bed scour was noted at isolated pockets along UT1. A few log sill structures should be resealed along UT1 to restore functionality. The lack of major problem areas along the length of the restored channels after the occurrence of two stream flow events larger than bankfull discharge further supports functionality of the design. It is expected that stability and in-stream habitat of the system will continue to improve in the coming years as permanent vegetation becomes more established.

6.0 WILDLIFE OBSERVATIONS

Observations of deer and raccoon tracks are common on the Site. During certain times of the year, frogs, turtles, turkey, and fish have also been periodically observed.

7.0 **REFERENCES**

Rosgen, D.L. 1994. A Classification of Natural Rivers. Catena 22:169-199.

Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.

United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS). 2006. Soil Series Descriptions. <u>http://soils.usda.gov/technical/classification/osd/index.html</u>

USDA. NRCS. 2006. Soil Taxonomy, A Basic System of Soil Classification for Making and Interpreting Soil Surveys. <u>ftp://ftp-fc.sc.egov.usda.gov/NSSC/Soil_Taxonomy/tax.pdf</u>

USDA. NRCS. 2003. Climate Information for Mecklenburg County in the State of North Carolina (1971-2000). TAPS Station : CHARLOTTE WSO AP, NC1690 ftp://ftp.wcc.nrcs.usda.gov/support/climate/taps/nc/37119.txt

USDA, NRCS. 2007. The PLANTS Database (28 November 2007). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. <u>http://plants.usda.gov</u>

U.S. Geological Service (USGS). 2007. Real-Time Data for North Carolina - Precipitation USGS Water-Data Site Information for North Carolina. USGS 35090308100454 Withers Cove in Mecklenburg County, NC. Retrieved on 2008-11-26 09:43:06 EDT http://waterdata.usgs.gov/nc/nwis/current/?type=precip&group_key=county_cd

APPENDIX A

Photo Log

UT1 – PID 1

UT1 – PID 2

UT1 – PID 3

UT1 – PID 4

UT1 – PID 5

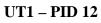
UT1 – PID 6

Beaverdam Creek, EEP Contract No. D05016-1, River Works, Inc. December 2008, Monitoring Year 2 - Draft

UT1 – PID 7

UT1 – PID 8

UT1 – PID 9



UT1 – PID 10

UT1 – PID 11

UT1 – PID 13

UT1 – PID 14

UT1 – PID 15

UT1 – PID 16

UT1 – PID 17

UT1 – PID 18

UT1 – PID 19

UT1 – PID 20

UT1 – PID 21

UT1 – PID 22

UT1 – PID 23

PHOTO LOG – UT1B, UT1C, & UT1D

UT1B – PID 1

UT1B – PID 2

UT1B – PID 3

UT1B – PID 4

UT1B – PID 5

UT1C – PID 6

Beaverdam Creek, EEP Contract No. D05016-1, River Works, Inc. December 2008, Monitoring Year 2 - Draft

PHOTO LOG – UT1B, UT1C, & UT1D

UT1C – PID 7

UTIC – PID 8

UT1C – PID 9

UTD – PID 10

UT1D – PID 11

UT1D – PID 12

Beaverdam Creek, EEP Contract No. D05016-1, River Works, Inc. December 2008, Monitoring Year 2 - Draft

PHOTO LOG – UT2 & UT2A

UT2 – PID 1

UT2 – PID 2

UT2 – PID 3

UT2 – PID 4

UT2 – PID 5

UT2 – PID 6

PHOTO LOG – UT2 & UT2A

UT2 – PID 7

UT2 – PID 9

UT2 – PID 8

UT2 – PID 10

UT2 – PID 11

UT2 – PID 12

PHOTO LOG – UT2 & UT2A

UT2A – PID 1

UT2A – PID 2

UT2A – PID 3

UT2A – PID 4

VEG PLOT PHOTOS – UT1 & UT1B – UT1D

UT1 – Veg Plot 1

UT1 – Veg Plot 2

UT1 – Veg Plot 3

UT1 – Veg Plot 4

UT1 – Veg Plot 5

UT1 – Veg Plot 6

VEG PLOT PHOTOS – UT1 & UT1B – UT1D

UT1 – Veg Plot 7

UT1 – Veg Plot 8

UT1 – Veg Plot 9

UT1 – Veg Plot 10

UT1 – Veg Plot 11

UT1 – Veg Plot 12

VEG PLOT PHOTOS – UT1 & UT1B – UT1D

UT1 – Veg Plot 13

UT1 – Veg Plot 14

UT1B – Veg Plot 15

UT1C – Veg Plot 16

UT1D – Veg Plot 17

VEG PLOT PHOTOS – UT2 & UT2A

UT2A – Veg Plot 1

UT2A – Veg Plot 2

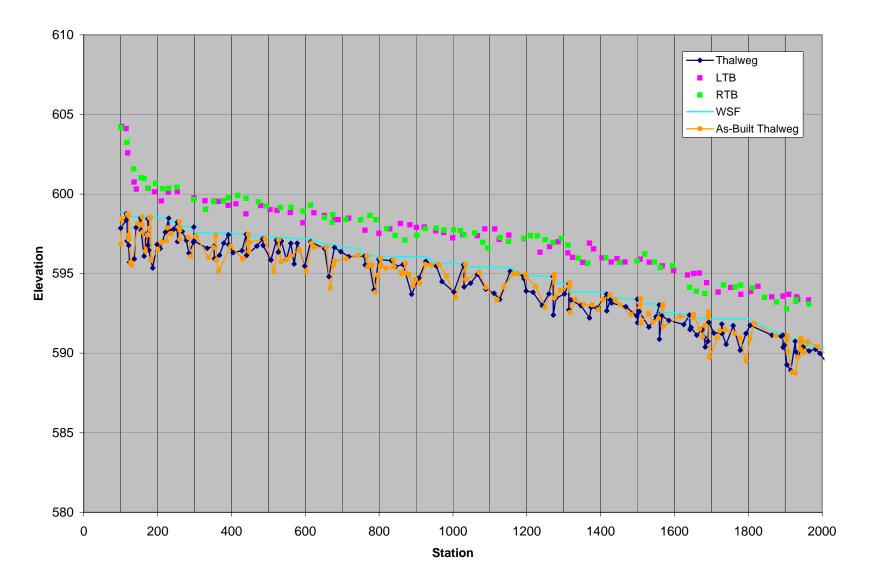
UT2 – Veg Plot 3

UT2 – Veg Plot 4

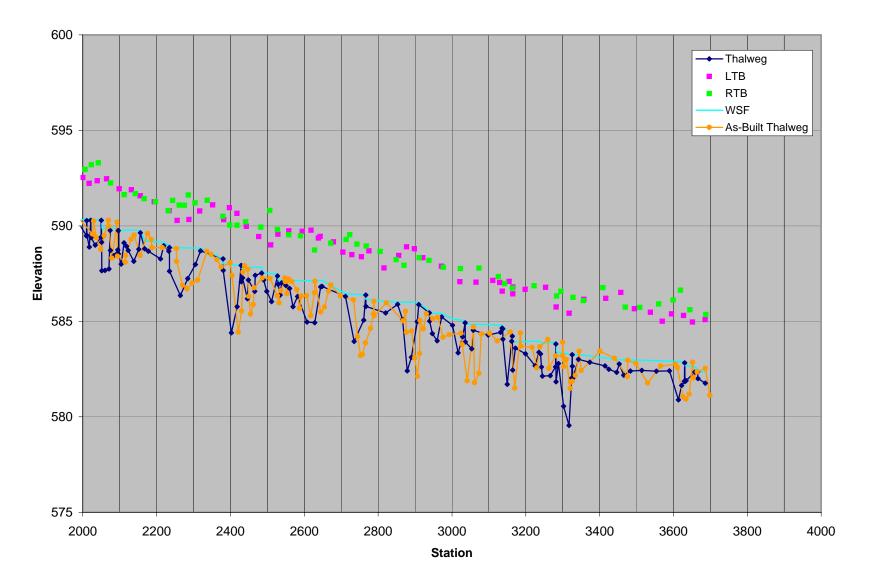
UT2 – Veg Plot 5

UT2 – Veg Plot 6

VEG PLOT PHOTOS – UT2 & UT2A

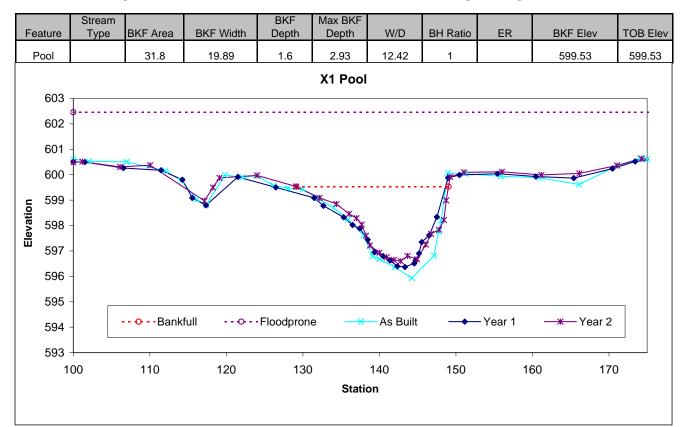


UT2 – Veg Plot 7


APPENDIX B

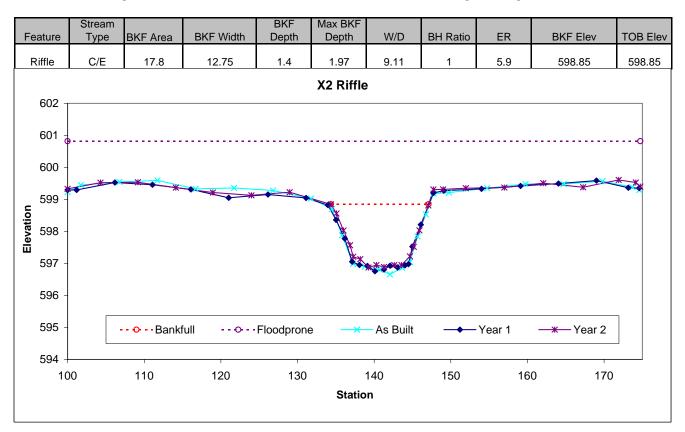
STREAM MONITORING DATA

Beaverdam Creek UT1 Mainstem Profile (2008 Monitoring)


Beaverdam Creek UT1 Mainstem Profile (2008 Monitoring)

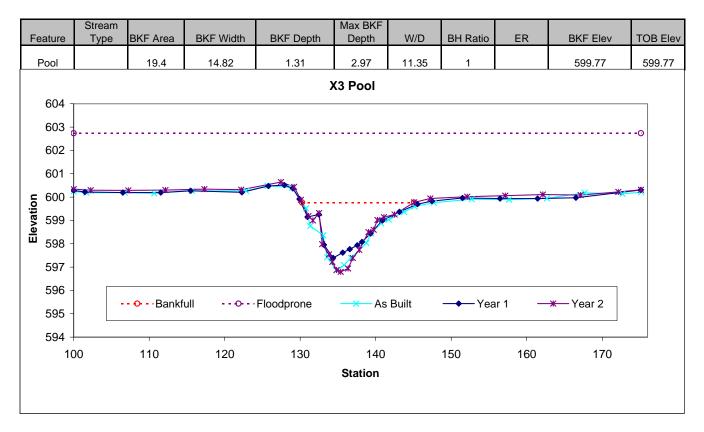
(Year 2 Monitoring Data - collected November 2008)

Looking at the Right Bank


(Year 2 Monitoring Data - collected November 2008)

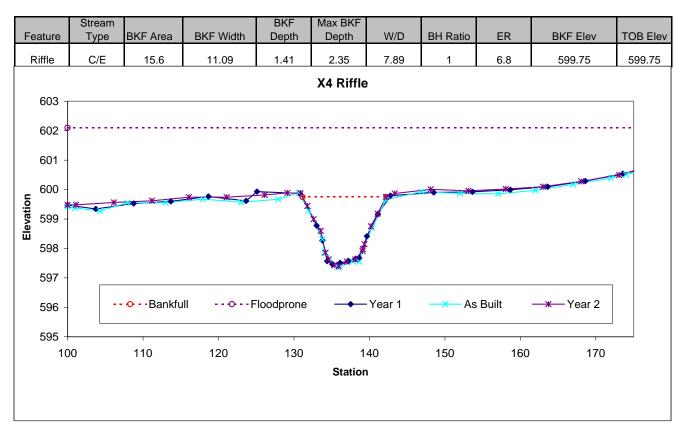
Looking at the Left Bank

Looking at the Right Bank


(Year 2 Monitoring Data - collected November 2008)

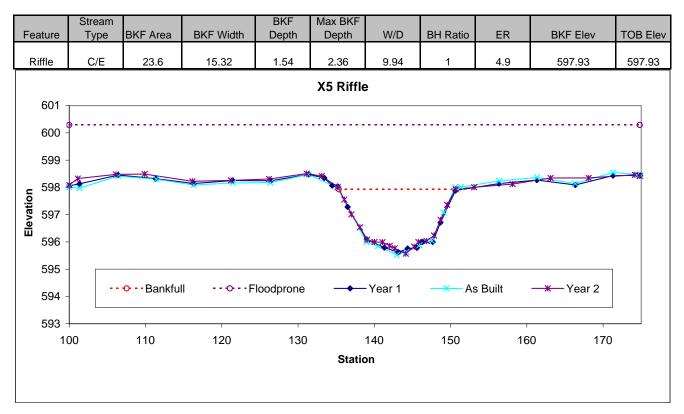
Looking at the Left Bank

Looking at the Right Bank


(Year 2 Monitoring Data - collected November 2008)

Looking at the Left Bank

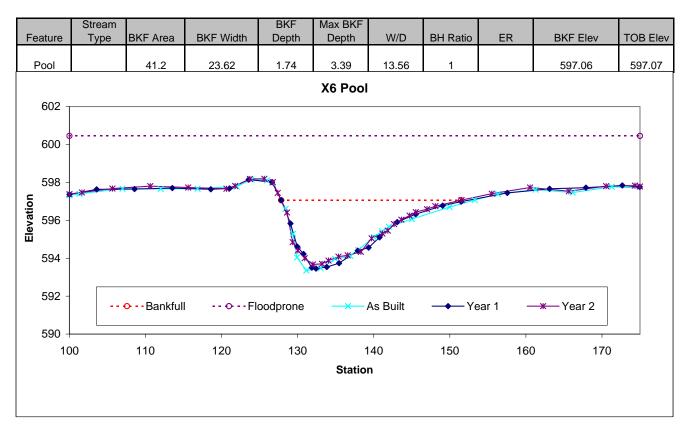
Looking at the Right Bank



(Year 2 Monitoring Data - collected November 2008)

Looking at the Left Bank

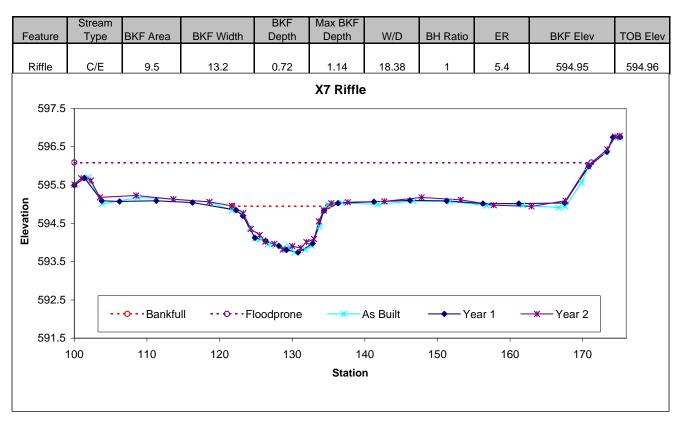
Looking at the Right Bank



(Year 2 Monitoring Data - collected November 2008)

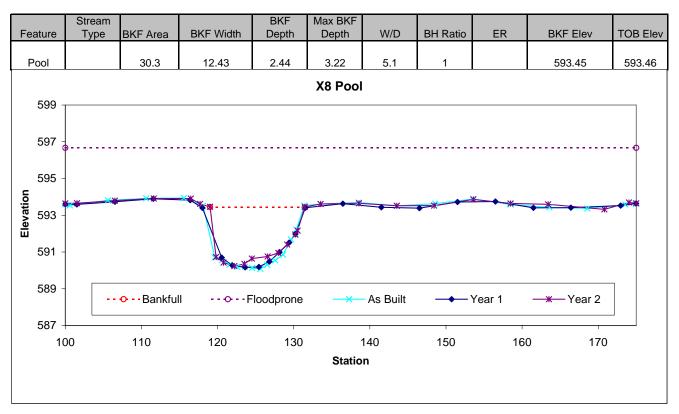
Looking at the Left Bank

Looking at the Right Bank


(Year 2 Monitoring Data - collected November 2008)

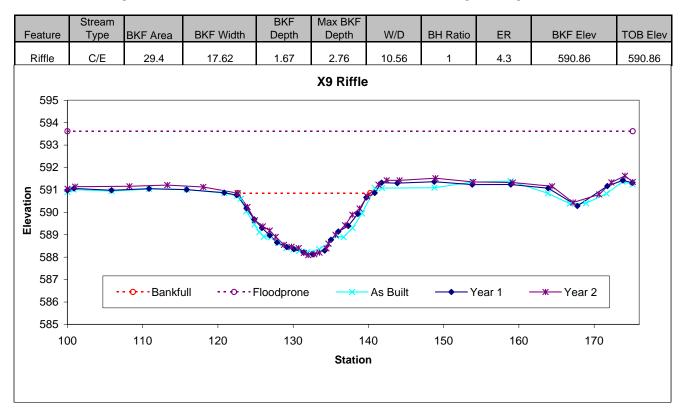
Looking at the Left Bank

Looking at the Right Bank


(Year 2 Monitoring Data - collected November 2008)

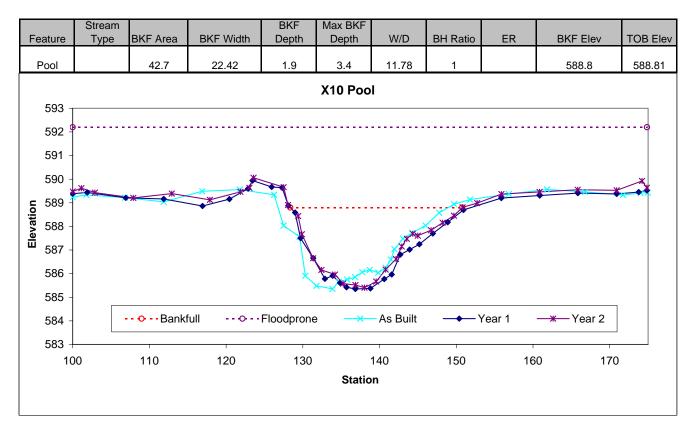
Looking at the Left Bank

Looking at the Right Bank



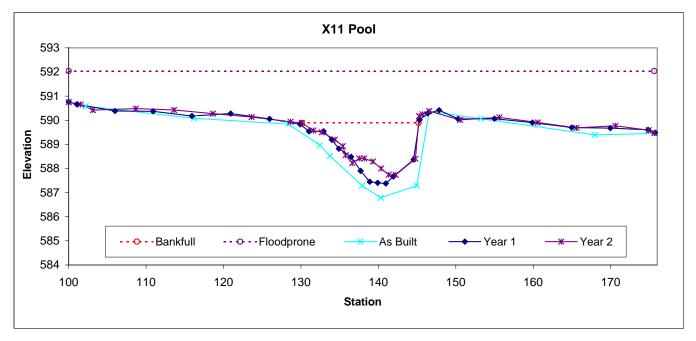
(Year 2 Monitoring Data - collected November 2008)

Looking at the Right Bank


(Year 2 Monitoring Data - collected November 2008)

Looking at the Left Bank

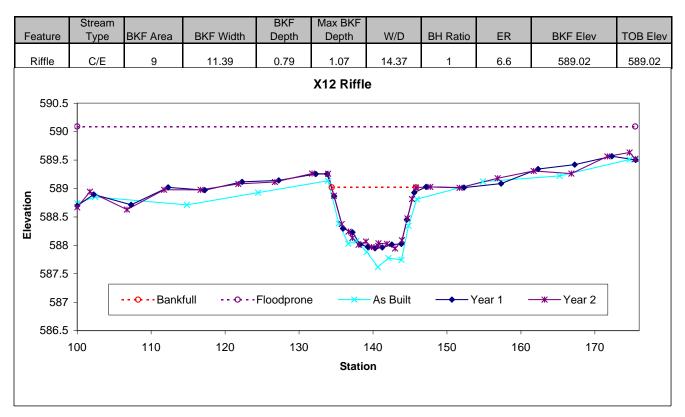
Looking at the Right Bank


(Year 2 Monitoring Data - collected November 2008)

Looking at the Left Bank

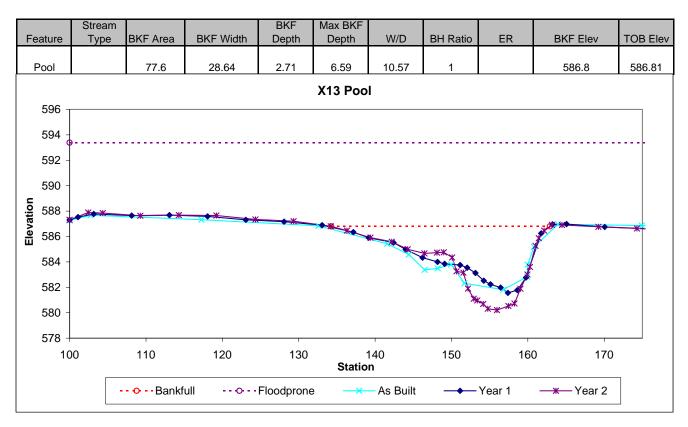
Looking at the Right Bank

	Stream				Max BKF					
Feature	Туре	BKF Area	BKF Width	BKF Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Pool		18.9	15.06	1.25	2.15	12.03	1		589.89	589.89


(Year 2 Monitoring Data - collected November 2008)

Looking at the Left Bank

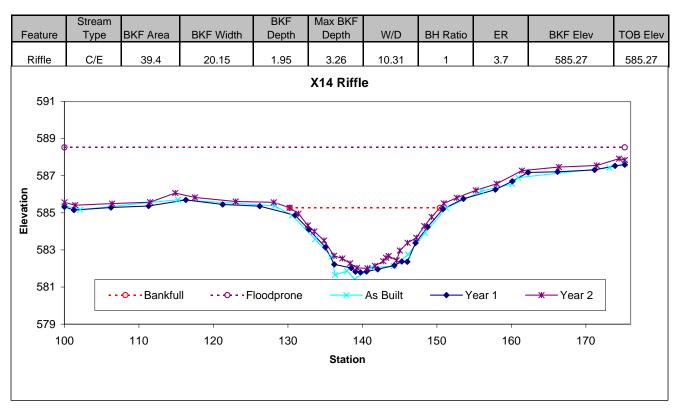
Looking at the Right Bank



(Year 2 Monitoring Data - collected November 2008)

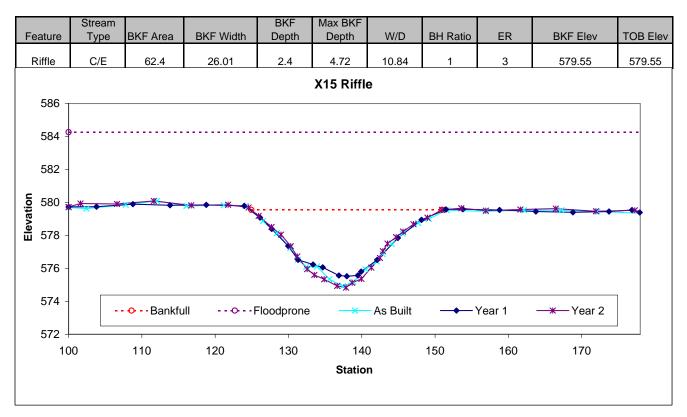
Looking at the Left Bank

Looking at the Right Bank


(Year 2 Monitoring Data - collected November 2008)

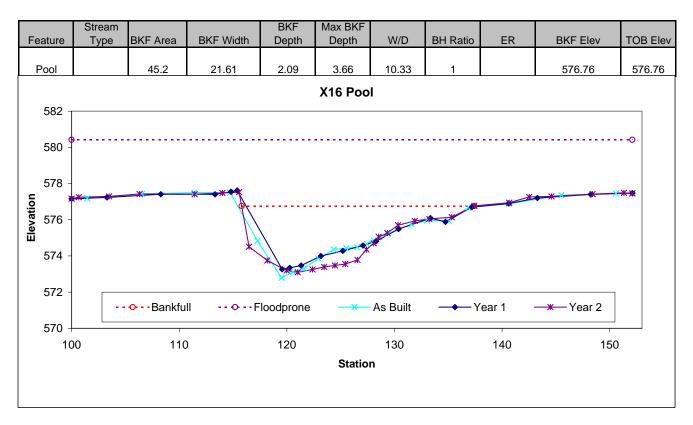
Looking at the Left Bank

Looking at the Right Bank


(Year 2 Monitoring Data - collected November 2008)

Looking at the Left Bank

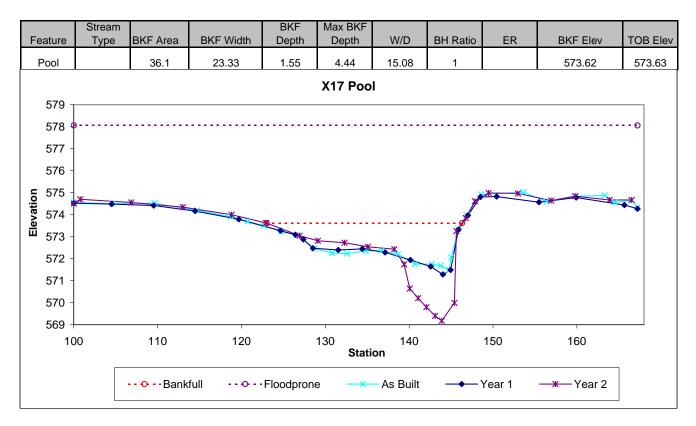
Looking at the Right Bank



(Year 2 Monitoring Data - collected November 2008)

Looking at the Left Bank

Looking at the Right Bank



(Year 2 Monitoring Data - collected November 2008)

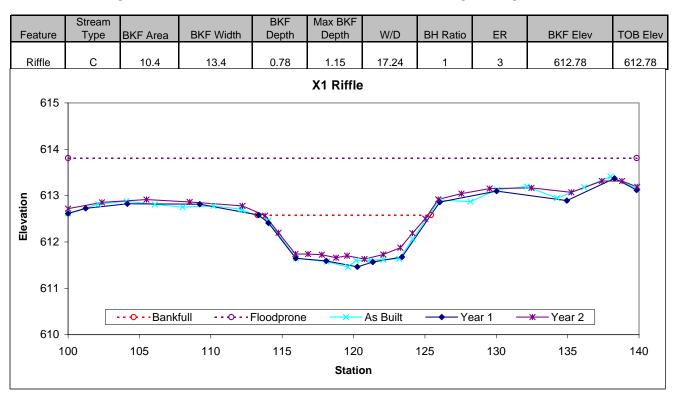
Looking at the Left Bank

Looking at the Right Bank



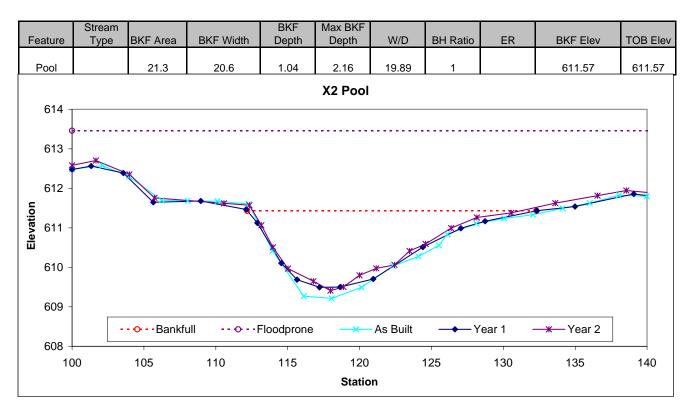
(Year 2 Monitoring Data - collected November 2008)

Looking at the Right Bank



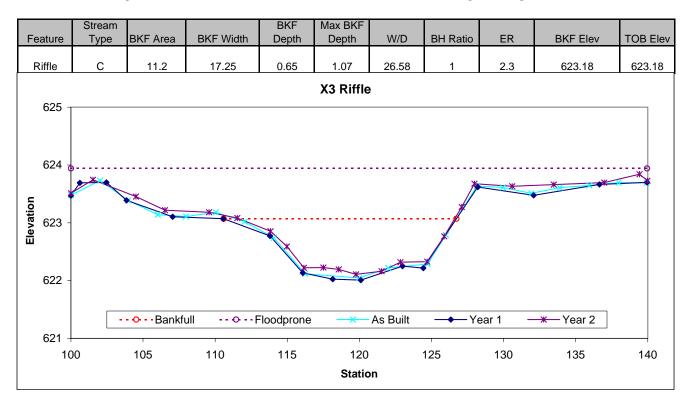
(Year 2 Monitoring Data - collected November 2008)

Looking at the Right Bank


(Year 2 Monitoring Data - collected November 2008)

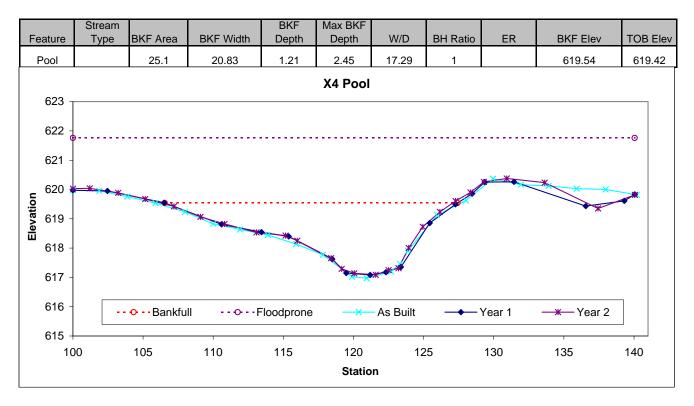
Looking at the Left Bank

Looking at the Right Bank


(Year 2 Monitoring Data - collected November 2008)

Looking at the Left Bank

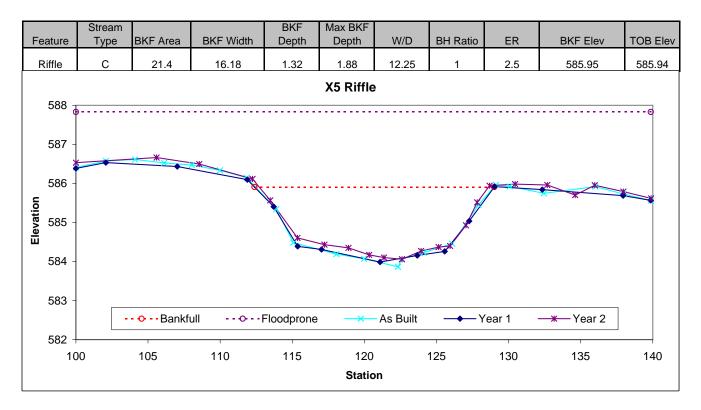
Looking at the Right Bank



(Year 2 Monitoring Data - collected November 2008)

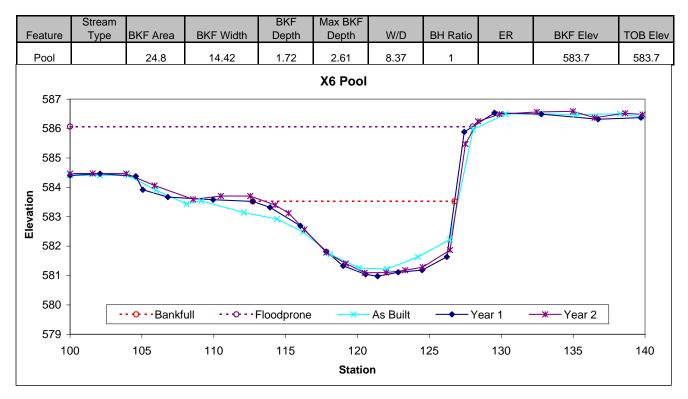
Looking at the Left Bank

Looking at the Right Bank


(Year 2 Monitoring Data - collected November 2008)

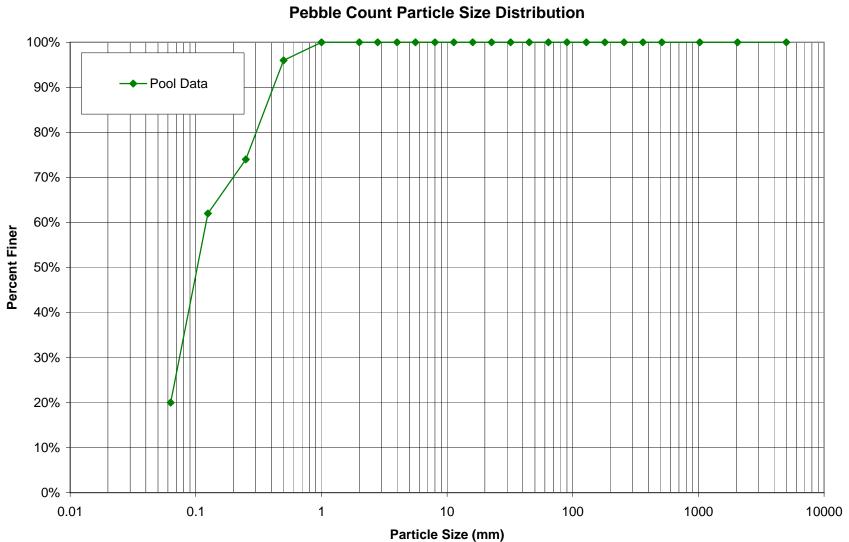
Looking at the Left Bank

Looking at the Right Bank


(Year 2 Monitoring Data - collected November 2008)

Looking at the Left Bank

Looking at the Right Bank


PEBBLE COUNT DATA SHEET: POOL 100-COUNT

	BAKER PROJECT NO. 108528				
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring				
REACH/LOCATION:	UT1 X1-Pool				
DATE COLLECTED:	11/12/2008				
FIELD COLLECTION BY:	IE/CT				
DATA ENTRY BY:	KS				

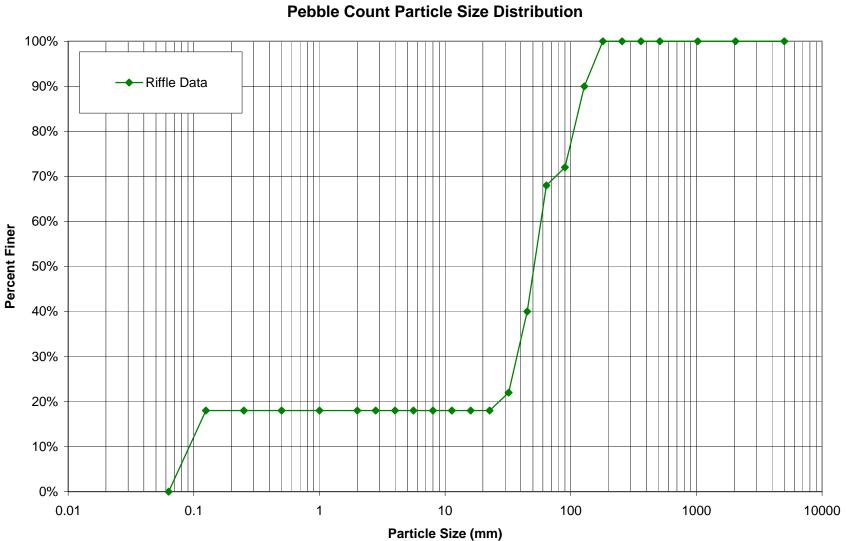
			PARTICLE CLASS COUNT	Sum	mary	Distribution
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum	Plot Size (mm)
SILT/CLAY	Silt / Clay	< .063	20	20%	20%	0.063
	Very Fine	.063125	42	42%	62%	0.125
S A	Fine	.12525	12	12%	74%	0.25
	Medium	.2550	22	22%	96%	0.50
N D	Coarse	.50 - 1.0	4	4%	100%	1.0
	Very Coarse	1.0 - 2.0			100%	2.0
86 8 54	Very Fine	2.0 - 2.8			100%	2.8
00000X	Very Fine	2.8 - 4.0			100%	4.0
0000000	Fine	4.0 - 5.6			100%	5.6
	Fine	5.6 - 8.0			100%	8.0
ACA ACOS	Medium	8.0 - 11.0			100%	11.3
EP20	Medium	11.0 - 16.0			100%	16.0
OCT C	Coarse	16.0 - 22.6			100%	22.6
603 [06-	Coarse	22.6 - 32			100%	32
	Very Coarse	32 - 45			100%	45
	Very Coarse	45 - 64			100%	64
OQQ	Small	64 - 90			100%	90
	Small	90 - 128			100%	128
	Large	128 - 180			100%	180
000	Large	180 - 256			100%	256
$\mathcal{P}\mathcal{O}$	Small	256 - 362			100%	362
	Small	362 - 512			100%	512
BOULDER	Medium	512 - 1024			100%	1024
$\bigcirc \bigcirc \bigcirc$	Large-Very Large	1024 - 2048			100%	2048
BEDROCK	Bedrock	> 2048			100%	5000
		Total	100	100%		

Largest particles:

(pool)

UT1 X1-Pool Pebble Count Particle Size Distribution

PEBBLE COUNT DATA SHEET: RIFFLE 100-COUNT


	BAKER PROJECT NO. 108528			
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring			
REACH/LOCATION:	UT1 X2-Riffle			
DATE COLLECTED:	11/12/2008			
FIELD COLLECTION BY:	IE/CT			
DATA ENTRY BY:	KS			

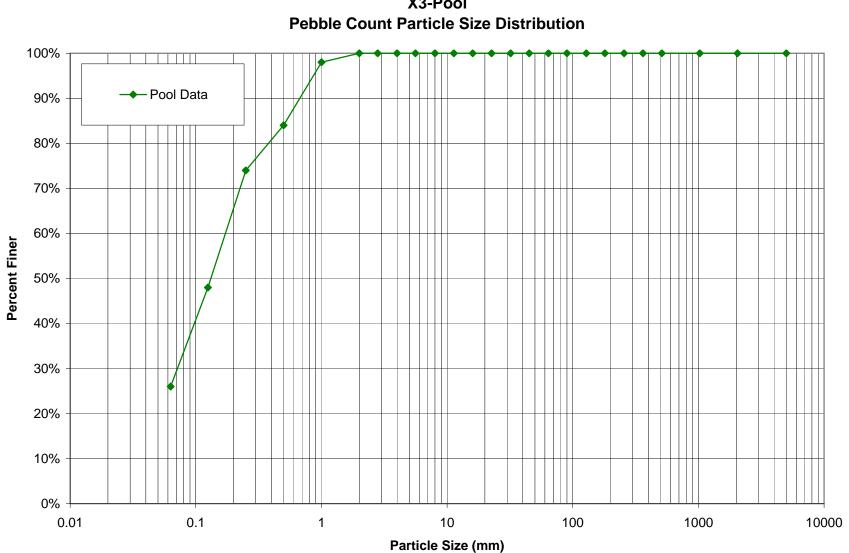
			PARTICLE CLASS COUNT	Sum	mary	Distr	
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum	Plot S	iz
SILT/CLAY	Silt / Clay	< .063			0%	0.	.0
S	Very Fine	.063125	18	18%	18%	0.	.1:
	Fine	.12525			18%	0).2
A	Medium	.2550			18%	0).5
N D	Coarse	.50 - 1.0			18%		1.
	Very Coarse	1.0 - 2.0			18%		2.
96 8 861	Very Fine	2.0 - 2.8			18%		2.
000000 000000	Very Fine	2.8 - 4.0			18%		4.
	Fine	4.0 - 5.6			18%		5.
	Fine	5.6 - 8.0			18%	8	8.
	Medium	8.0 - 11.0			18%	1	11.
	Medium	11.0 - 16.0			18%	1	16
	Coarse	16.0 - 22.6			18%	2	22
600100	Coarse	22.6 - 32	4	4%	22%		32
0000000 000000000000000000000000000000	Very Coarse	32 - 45	18	18%	40%		45
	Very Coarse	45 - 64	28	28%	68%		64
$\bigcap Q^{c}$	Small	64 - 90	4	4%	72%		90
$\Delta \Delta Q$	Small	90 - 128	18	18%	90%	1	12
	Large	128 - 180	10	10%	100%	1	18
000	Large	180 - 256			100%	2	25
20	Small	256 - 362			100%	3	36
	Small	362 - 512			100%	5	51
BOULDER	Medium	512 - 1024			100%	1	02
	Large-Very Large	1024 - 2048			100%	2	204
BEDROCK	Bedrock	> 2048			100%	5	500
		Total	100	100%			

ibution ze (mm) 063 125 .25 .50 .0 2.0 2.8 1.0 5.6 3.0 1.3 6.0 2.6 32 45 64 90 28 80 256 62 12)24 048 000

Largest particles:

(riffle)

UT1 X2-Riffle Pebble Count Particle Size Distribution

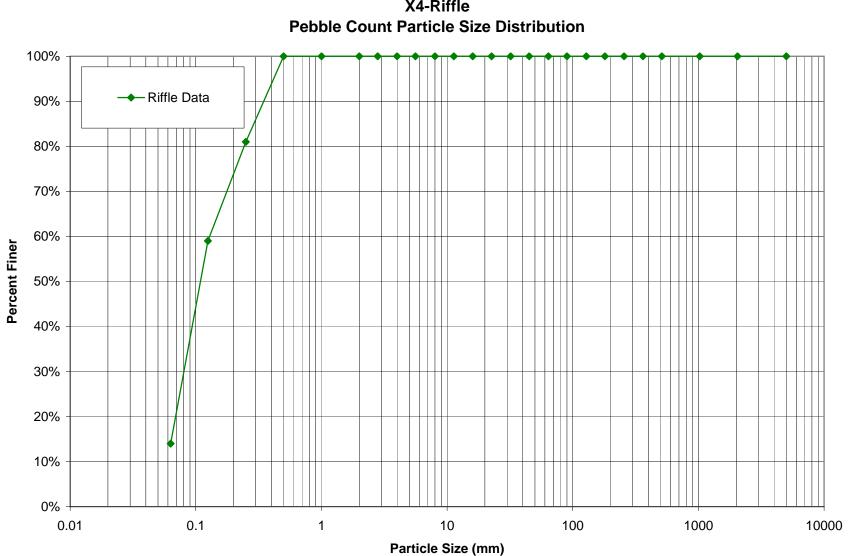

	BAKER PROJECT NO. 108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring
REACH/LOCATION:	UT1B X3-Pool
DATE COLLECTED:	11/12/2008
FIELD COLLECTION BY:	IE/CT
DATA ENTRY BY:	KS

			PARTICLE CLASS COUNT	Sum	mary	Dis	stribution
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum	Plot	Size (mm)
SILT/CLAY	Silt / Clay	< .063	26	26%	26%		0.063
	Very Fine	.063125	22	22%	48%		0.125
S	Fine	.12525	26	26%	74%		0.25
A	Medium	.2550	10	10%	84%		0.50
N D	Coarse	.50 - 1.0	14	14%	98%		1.0
	Very Coarse	1.0 - 2.0	2	2%	100%		2.0
96888N	Very Fine	2.0 - 2.8			100%		2.8
10202-00	Very Fine	2.8 - 4.0			100%		4.0
00 <u>00</u> 000	Fine	4.0 - 5.6			100%		5.6
	Fine	5.6 - 8.0			100%		8.0
ACA 005	Medium	8.0 - 11.0			100%		11.3
	Medium	11.0 - 16.0			100%		16.0
	Coarse	16.0 - 22.6			100%		22.6
601 68	Coarse	22.6 - 32			100%		32
	Very Coarse	32 - 45			100%		45
	Very Coarse	45 - 64			100%		64
OQQ	Small	64 - 90			100%		90
	Small	90 - 128			100%		128
	Large	128 - 180			100%		180
000	Large	180 - 256			100%		256
$\mathcal{O}\mathcal{O}$	Small	256 - 362			100%		362
	Small	362 - 512			100%		512
BOULDER	Medium	512 - 1024			100%		1024
$\gamma \rightarrow$	Large-Very Large	1024 - 2048			100%		2048
BEDROCK	Bedrock	> 2048			100%		5000
		Total	100	100%			

e (mm) 63 125 25 50 .0 .0 .8 .0 .6 .0 .3 .0 .6 2 5 64 28 30 56 62 12 24 48 000

Largest particles:

(pool)


UT1B X3-Pool

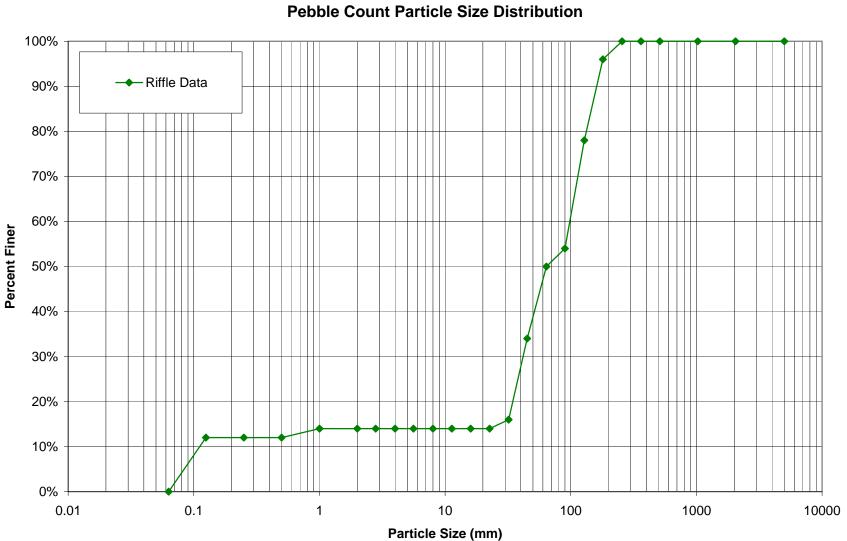
	BAKER PROJECT NO. 108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring
REACH/LOCATION:	UT1B X4-Riffle
DATE COLLECTED:	11/12/2008
FIELD COLLECTION BY:	IE/CT
DATA ENTRY BY:	KS

					PARTICLE CLASS COUNT	Sum	mary	Distribution
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum	Plot Size (mm)		
SILT/CLAY	Silt / Clay	< .063	14	14%	14%	0.063		
	Very Fine	.063125	45	45%	59%	0.125		
S	Fine	.12525	22	22%	81%	0.25		
Α	Medium	.2550	19	19%	100%	0.50		
N D	Coarse	.50 - 1.0			100%	1.0		
	Very Coarse	1.0 - 2.0			100%	2.0		
96888 K	Very Fine	2.0 - 2.8			100%	2.8		
20000X	Very Fine	2.8 - 4.0			100%	4.0		
00 A 85	Fine	4.0 - 5.6			100%	5.6		
	Fine	5.6 - 8.0			100%	8.0		
AS A DOS	Medium	8.0 - 11.0			100%	11.3		
	Medium	11.0 - 16.0			100%	16.0		
OCL CO	Coarse	16.0 - 22.6			100%	22.6		
609 199-	Coarse	22.6 - 32			100%	32		
	Very Coarse	32 - 45			100%	45		
	Very Coarse	45 - 64			100%	64		
OQQ	Small	64 - 90			100%	90		
	Small	90 - 128			100%	128		
	Large	128 - 180			100%	180		
000	Large	180 - 256			100%	256		
$\mathcal{O}\mathcal{O}$	Small	256 - 362			100%	362		
	Small	362 - 512			100%	512		
BOULDER	Medium	512 - 1024			100%	1024		
$\langle \rangle \rangle$	Large-Very Large	1024 - 2048			100%	2048		
BEDROCK	Bedrock	> 2048			100%	5000		
		Total	100	100%				

Largest particles:

(riffle)

UT1B X4-Riffle

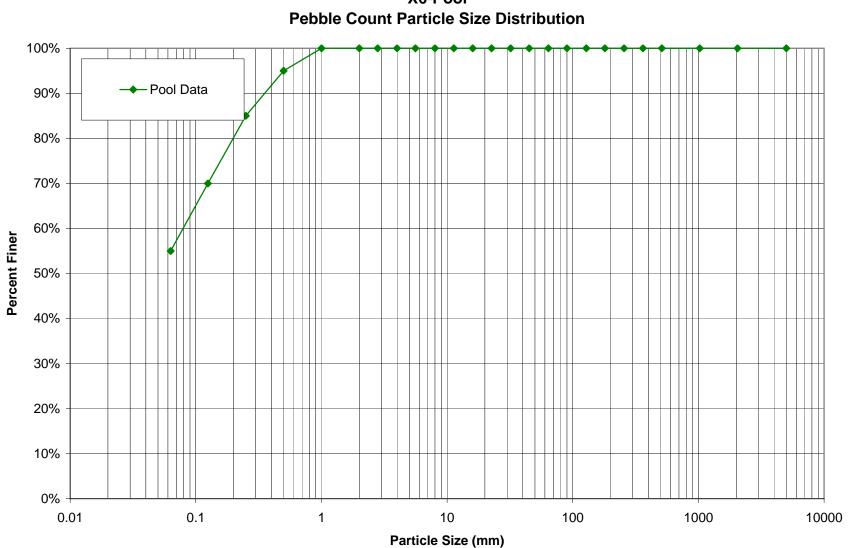

	BAKER PROJECT NO. 108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring
REACH/LOCATION:	UT1 X5-Riffle
DATE COLLECTED:	11/12/2008
FIELD COLLECTION BY:	IE/CT
DATA ENTRY BY:	KS

			PARTICLE CLASS COUNT	Sum	mary	Distribution
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum	Plot Size (mm)
SILT/CLAY	Silt / Clay	< .063			0%	0.063
	Very Fine	.063125	12	12%	12%	0.125
S	Fine	.12525			12%	0.25
Α	Medium	.2550			12%	0.50
N D	Coarse	.50 - 1.0	2	2%	14%	1.0
	Very Coarse	1.0 - 2.0			14%	2.0
86 8 84	Very Fine	2.0 - 2.8			14%	2.8
200000 100000	Very Fine	2.8 - 4.0			14%	4.0
00 00 00 00 00 00	Fine	4.0 - 5.6			14%	5.6
	Fine	5.6 - 8.0			14%	8.0
22 A COS	Medium	8.0 - 11.0			14%	11.3
	Medium	11.0 - 16.0			14%	16.0
	Coarse	16.0 - 22.6			14%	22.6
600100	Coarse	22.6 - 32	2	2%	16%	32
0000000	Very Coarse	32 - 45	18	18%	34%	45
	Very Coarse	45 - 64	16	16%	50%	64
	Small	64 - 90	4	4%	54%	90
	Small	90 - 128	24	24%	78%	128
	Large	128 - 180	18	18%	96%	180
	Large	180 - 256	4	4%	100%	256
$\mathcal{P}\mathcal{O}$	Small	256 - 362			100%	362
BOULDER	Small	362 - 512			100%	512
	Medium	512 - 1024			100%	1024
\rightarrow	Large-Very Large	1024 - 2048			100%	2048
BEDROCK	Bedrock	> 2048			100%	5000

Size (mm) .063).125 0.25 0.50 1.0 2.0 2.8 4.0 5.6 8.0 1.3 16.0 22.6 32 45 64 90 128 180 256 362 512 1024 2048

Largest particles:

(riffle)


UT1 X5-Riffle Pebble Count Particle Size Distribution

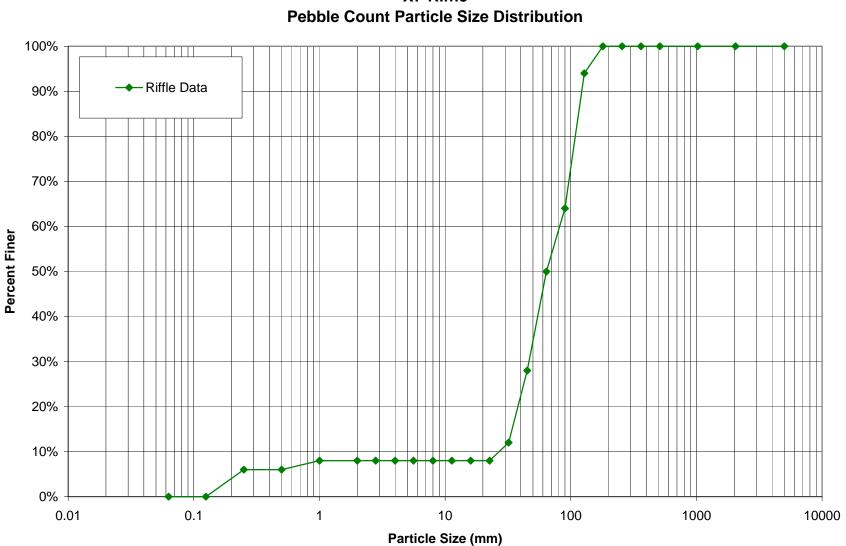
	BAKER PROJECT NO. 108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring
REACH/LOCATION:	UT1 X6-Pool
DATE COLLECTED:	11/12/2008
FIELD COLLECTION BY:	IE/CT
DATA ENTRY BY:	KS

			PARTICLE CLASS COUNT	Sum	mary		Distribution
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum		Plot Size (mm)
SILT/CLAY	Silt / Clay	< .063	55	55%	55%		0.063
	Very Fine	.063125	15	15%	70%		0.125
S	Fine	.12525	15	15%	85%		0.25
A	Medium	.2550	10	10%	95%		0.50
N D	Coarse	.50 - 1.0	5	5%	100%		1.0
	Very Coarse	1.0 - 2.0			100%		2.0
8888 A	Very Fine	2.0 - 2.8			100%		2.8
00000X	Very Fine	2.8 - 4.0			100%		4.0
	Fine	4.0 - 5.6			100%		5.6
	Fine	5.6 - 8.0			100%		8.0
	Medium	8.0 - 11.0			100%		11.3
EP20	Medium	11.0 - 16.0			100%		16.0
Ogg L Roo	Coarse	16.0 - 22.6			100%		22.6
609 KB	Coarse	22.6 - 32			100%		32
	Very Coarse	32 - 45			100%		45
	Very Coarse	45 - 64			100%		64
OQC	Small	64 - 90			100%		90
	Small	90 - 128			100%		128
	Large	128 - 180			100%		180
000	Large	180 - 256			100%		256
2	Small	256 - 362			100%		362
	Small	362 - 512			100%	1	512
BOULDER	Medium	512 - 1024			100%		1024
\sim	Large-Very Large	1024 - 2048			100%		2048
BEDROCK	Bedrock	> 2048			100%		5000
		Total	100	100%			

Largest particles:

(pool)

UT1 X6-Pool Pebble Count Particle Size Distribution


	BAKER PROJECT NO. 108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring
REACH/LOCATION:	UT1C X7-Riffle
DATE COLLECTED:	11/12/2008
FIELD COLLECTION BY:	IE/CT
DATA ENTRY BY:	KS

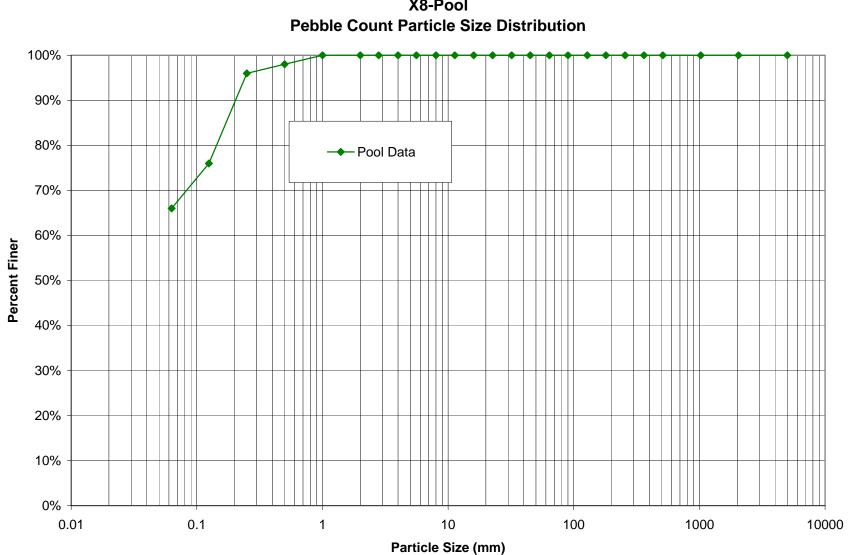
			PARTICLE CLASS COUNT	Sum	mary	Distribution
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum	Plot Size (mm)
SILT/CLAY	Silt / Clay	< .063			0%	0.063
	Very Fine	.063125			0%	0.125
S	Fine	.12525	6	6%	6%	0.25
A	Medium	.2550			6%	0.50
N D	Coarse	.50 - 1.0	2	2%	8%	1.0
	Very Coarse	1.0 - 2.0			8%	2.0
88 8 84	Very Fine	2.0 - 2.8			8%	2.8
0000000	Very Fine	2.8 - 4.0			8%	4.0
00000000	Fine	4.0 - 5.6			8%	5.6
	Fine	5.6 - 8.0			8%	8.0
	Medium	8.0 - 11.0			8%	11.3
	Medium	11.0 - 16.0			8%	16.0
	Coarse	16.0 - 22.6			8%	22.6
6001.08-	Coarse	22.6 - 32	4	4%	12%	32
0060000	Very Coarse	32 - 45	16	16%	28%	45
	Very Coarse	45 - 64	22	22%	50%	64
OQQ	Small	64 - 90	14	14%	64%	90
COBBLE	Small	90 - 128	30	30%	94%	128
	Large	128 - 180	6	6%	100%	180
000	Large	180 - 256			100%	256
\mathcal{O}	Small	256 - 362			100%	362
\square	Small	362 - 512			100%	512
BOULDER	Medium	512 - 1024			100%	1024
\rightarrow	Large-Very Large	1024 - 2048			100%	2048
BEDROCK	Bedrock	> 2048			100%	5000
		Total	100	100%		

Size (mm) 0.063 0.125 0.25 0.50 1.0 2.0 2.8 4.0 5.6 8.0 11.3 16.0 22.6 32 45 64 90 128 180 256 362 512 1024 2048 5000

Largest particles:

(riffle)

UT1C X7-Riffle Pebble Count Particle Size Distribution


	BAKER PROJECT NO. 108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring
REACH/LOCATION:	UT1C X8-Pool
DATE COLLECTED:	11/12/2008
FIELD COLLECTION BY:	IE/CT
DATA ENTRY BY:	KS

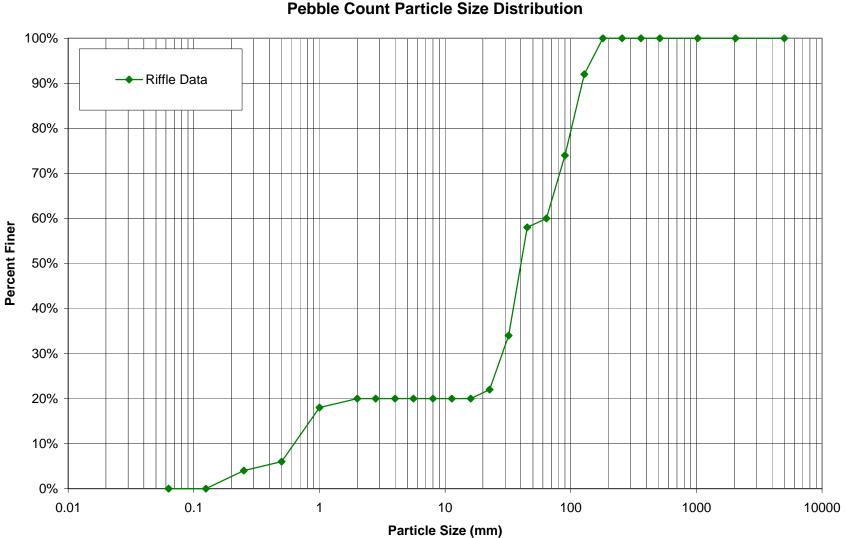
			PARTICLE CLASS COUNT	Sum	mary	Distribution	on
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum	Plot Size (mr	n)
SILT/CLAY	Silt / Clay	< .063	66	66%	66%	0.063	
	Very Fine	.063125	10	10%	76%	0.125	
S	Fine	.12525	20	20%	96%	0.25	
A	Medium	.2550	2	2%	98%	0.50	
N D	Coarse	.50 - 1.0	2	2%	100%	1.0	
	Very Coarse	1.0 - 2.0			100%	2.0	
SS BBA	Very Fine	2.0 - 2.8			100%	2.8	
No of ot	Very Fine	2.8 - 4.0			100%	4.0	
Q 4 8 8	Fine	4.0 - 5.6			100%	5.6	
	Fine	5.6 - 8.0			100%	8.0	
200 A COS	Medium	8.0 - 11.0			100%	11.3	
EP20	Medium	11.0 - 16.0			100%	16.0	
OC L	Coarse	16.0 - 22.6			100%	22.6	
669 68	Coarse	22.6 - 32			100%	32	
	Very Coarse	32 - 45			100%	45	
	Very Coarse	45 - 64			100%	64	
OQC	Small	64 - 90			100%	90	-
COBBLE	Small	90 - 128			100%	128	
	Large	128 - 180			100%	180	
000	Large	180 - 256			100%	256	
$\langle \rangle$	Small	256 - 362			100%	362	_
	Small	362 - 512			100%	512	
BOULDER	Medium	512 - 1024			100%	1024	
\sim	Large-Very Large	1024 - 2048			100%	2048	
BEDROCK	Bedrock	> 2048			100%	5000	
		Total	100	100%			

e (mm) 63 125 25 50 .0 .0 .8 .0 .6 .0 .3 .0 .6 2 5 64 28 30 56 62 12 24 48 000

Largest particles:

(pool)

UT1C X8-Pool


	BAKER PROJECT NO. 108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring
REACH/LOCATION:	UT1 X9-Riffle
DATE COLLECTED:	11/11/2008
FIELD COLLECTION BY:	IE/CT
DATA ENTRY BY:	KS

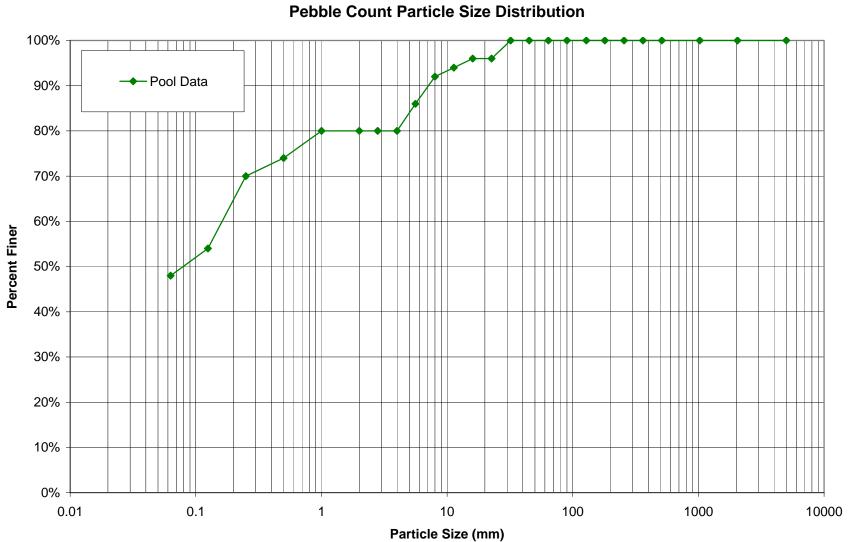
			PARTICLE CLASS COUNT	Sum	mary	Distribution
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum	Plot Size (mm)
SILT/CLAY	Silt / Clay	< .063			0%	0.063
	Very Fine	.063125			0%	0.125
S	Fine	.12525	4	4%	4%	0.25
Α	Medium	.2550	2	2%	6%	0.50
N D	Coarse	.50 - 1.0	12	12%	18%	1.0
	Very Coarse	1.0 - 2.0	2	2%	20%	2.0
88 8 8%	Very Fine	2.0 - 2.8			20%	2.8
100000	Very Fine	2.8 - 4.0			20%	4.0
00 D 80	Fine	4.0 - 5.6			20%	5.6
	Fine	5.6 - 8.0			20%	8.0
A 005	Medium	8.0 - 11.0			20%	11.3
	Medium	11.0 - 16.0			20%	16.0
	Coarse	16.0 - 22.6	2	2%	22%	22.6
600100	Coarse	22.6 - 32	12	12%	34%	32
	Very Coarse	32 - 45	24	24%	58%	45
	Very Coarse	45 - 64	2	2%	60%	64
OQQ	Small	64 - 90	14	14%	74%	90
	Small	90 - 128	18	18%	92%	128
	Large	128 - 180	8	8%	100%	180
000	Large	180 - 256			100%	256
\mathcal{O}	Small	256 - 362			100%	362
	Small	362 - 512			100%	512
BOULDER	Medium	512 - 1024			100%	1024
\rightarrow	Large-Very Large	1024 - 2048			100%	2048
BEDROCK	Bedrock	> 2048			100%	5000
		Total	100	100%		

ot Size (mm) 0.063 0.125 0.25 0.50 1.0 2.0 2.8 4.0 5.6 8.0 11.3 16.0 22.6 32 45 64 90 128 180 256 362 512 1024 2048 5000

Largest particles:

(riffle)

UT1 X9-Riffle Pebble Count Particle Size Distribution

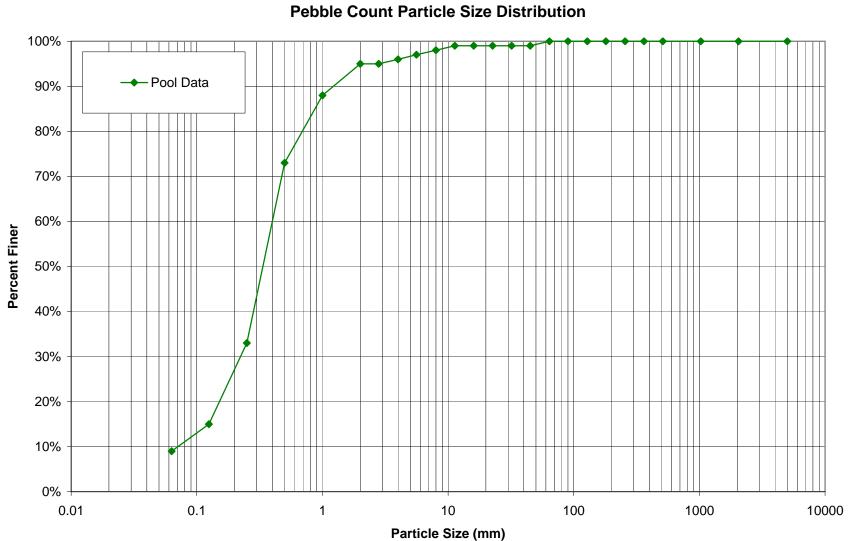

	BAKER PROJECT NO. 108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring
REACH/LOCATION:	UT1 X10-Pool
DATE COLLECTED:	11/11/2008
FIELD COLLECTION BY:	IE/CT
DATA ENTRY BY:	KS

			PARTICLE CLASS COUNT	Sum	mary	Distribution
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum	Plot Size (mm)
SILT/CLAY	Silt / Clay	< .063	48	48%	48%	0.063
	Very Fine	.063125	6	6%	54%	0.125
S	Fine	.12525	16	16%	70%	0.25
A	Medium	.2550	4	4%	74%	0.50
N D	Coarse	.50 - 1.0	6	6%	80%	1.0
	Very Coarse	1.0 - 2.0			80%	2.0
868884	Very Fine	2.0 - 2.8			80%	2.8
000000X	Very Fine	2.8 - 4.0			80%	4.0
0000000	Fine	4.0 - 5.6	6	6%	86%	5.6
	Fine	5.6 - 8.0	6	6%	92%	8.0
AC 4000	Medium	8.0 - 11.0	2	2%	94%	11.3
EP20	Medium	11.0 - 16.0	2	2%	96%	16.0
OC L	Coarse	16.0 - 22.6			96%	22.6
669 68	Coarse	22.6 - 32	4	4%	100%	32
	Very Coarse	32 - 45			100%	45
	Very Coarse	45 - 64			100%	64
OQC	Small	64 - 90			100%	90
	Small	90 - 128			100%	128
	Large	128 - 180			100%	180
000	Large	180 - 256			100%	256
$\langle \rangle$	Small	256 - 362			100%	362
	Small	362 - 512			100%	512
BOULDER	Medium	512 - 1024			100%	1024
\sim	Large-Very Large	1024 - 2048			100%	2048
BEDROCK	Bedrock	> 2048			100%	5000
		Total	100	100%		

ize (mm) 063 .125 .25 .50 1.0 2.0 2.8 1.0 5.6 8.0 1.3 6.0 22.6 32 45 64 90 128 180 256 362 512 024 048 000

Largest particles:

(pool)


UT1 X10-Pool Pebble Count Particle Size Distribution

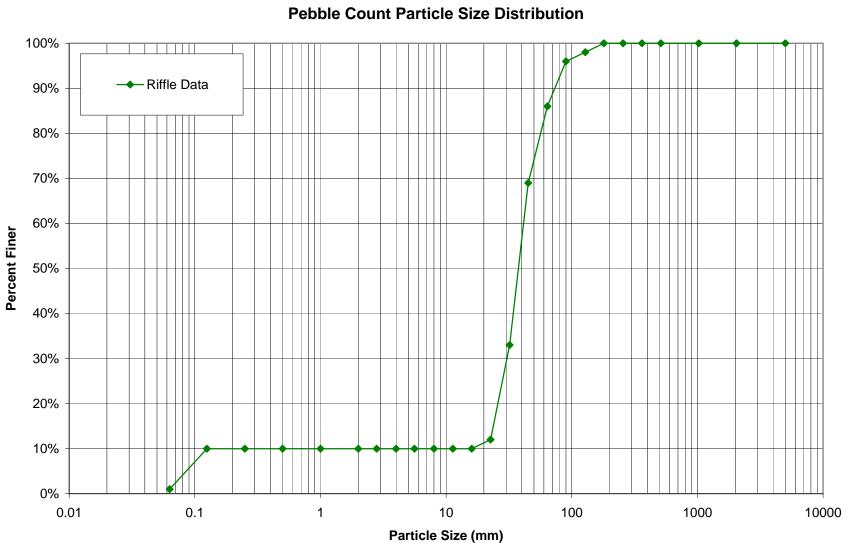
	BAKER PROJECT NO. 108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring
REACH/LOCATION:	UT1D X11-Pool
DATE COLLECTED:	11/11/2008
FIELD COLLECTION BY:	IE/CT
DATA ENTRY BY:	KS

			PARTICLE CLASS COUNT	Sum	mary	[Distribution
MATERIAL	PARTICLE	SIZE (mm)		Class %	% Cum		Plot Size (mm)
SILT/CLAY	Silt / Clay	< .063	9	9%	9%		0.063
	Very Fine	.063125	6	6%	15%		0.125
S	Fine	.12525	18	18%	33%		0.25
Α	Medium	.2550	40	40%	73%		0.50
N D	Coarse	.50 - 1.0	15	15%	88%		1.0
	Very Coarse	1.0 - 2.0	7	7%	95%		2.0
86888 A	Very Fine	2.0 - 2.8			95%		2.8
NG OG OX	Very Fine	2.8 - 4.0	1	1%	96%	_	4.0
Q 4 8 8	Fine	4.0 - 5.6	1	1%	97%	_	5.6
	Fine	5.6 - 8.0	1	1%	98%	_	8.0
AC 405	Medium	8.0 - 11.0	1	1%	99%		11.3
	Medium	11.0 - 16.0			99%		16.0
OOJL CO	Coarse	16.0 - 22.6			99%		22.6
609 198-	Coarse	22.6 - 32			99%		32
	Very Coarse	32 - 45			99%		45
	Very Coarse	45 - 64	1	1%	100%		64
OQQ	Small	64 - 90			100%		90
	Small	90 - 128			100%		128
	Large	128 - 180			100%		180
000	Large	180 - 256			100%		256
\mathcal{O}	Small	256 - 362			100%		362
\square	Small	362 - 512			100%		512
BOULDER	Medium	512 - 1024			100%		1024
$\langle \rangle \rangle$	Large-Very Large	1024 - 2048			100%		2048
BEDROCK	Bedrock	> 2048			100%		5000
		Total	100	100%			

Largest particles:

(pool)

UT1D X11-Pool Pebble Count Particle Size Distribution


	BAKER PROJECT NO. 108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring
REACH/LOCATION:	UT1D X12-Riffle
DATE COLLECTED:	11/11/2008
FIELD COLLECTION BY:	IE/CT
DATA ENTRY BY:	KS

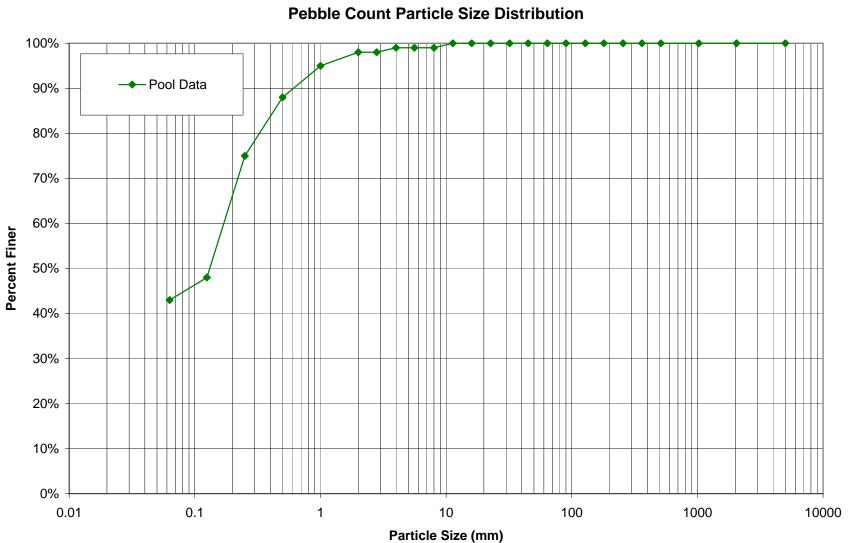
			PARTICLE CLASS COUNT	Sum	mary	Distri	
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum	Plot	Size
SILT/CLAY	Silt / Clay	< .063	1	1%	1%		0.0
	Very Fine	.063125	9	9%	10%		0.12
S	Fine	.12525			10%		0.2
A	Medium	.2550			10%		0.5
N D	Coarse	.50 - 1.0			10%		1.0
	Very Coarse	1.0 - 2.0			10%		2.0
268861	Very Fine	2.0 - 2.8			10%		2.8
$m_{\rm s}$	Very Fine	2.8 - 4.0			10%		4.0
CAR S	Fine	4.0 - 5.6			10%		5.
	Fine	5.6 - 8.0			10%		8.
	Medium	8.0 - 11.0			10%		11.
	Medium	11.0 - 16.0			10%		16
SOJ- 600	Coarse	16.0 - 22.6	2	2%	12%		22.
22 Spc	Coarse	22.6 - 32	21	21%	33%		32
	Very Coarse	32 - 45	36	36%	69%		45
	Very Coarse	45 - 64	17	17%	86%		64
OQC	Small	64 - 90	10	10%	96%		90
	Small	90 - 128	2	2%	98%		12
	Large	128 - 180	2	2%	100%		18
000	Large	180 - 256			100%		25
20	Small	256 - 362			100%		36
	Small	362 - 512			100%		51
BOULDER	Medium	512 - 1024			100%		102
$\land \mathrel{\succ}$	Large-Very Large	1024 - 2048			100%		204
BEDROCK	Bedrock	> 2048			100%		500
			100	100%			_

ibution ze (mm) 063 125 .25 .50 .0 2.0 2.8 1.0 5.6 3.0 1.3 6.0 2.6 32 45 64 90 28 80 256 62 12)24 048 000

Largest particles:

(riffle)

UT1D X12-Riffle Pebble Count Particle Size Distribution


	BAKER PROJECT NO. 108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring
REACH/LOCATION:	UT1 X13-Pool
DATE COLLECTED:	11/11/2008
FIELD COLLECTION BY:	IE/CT
DATA ENTRY BY:	KS

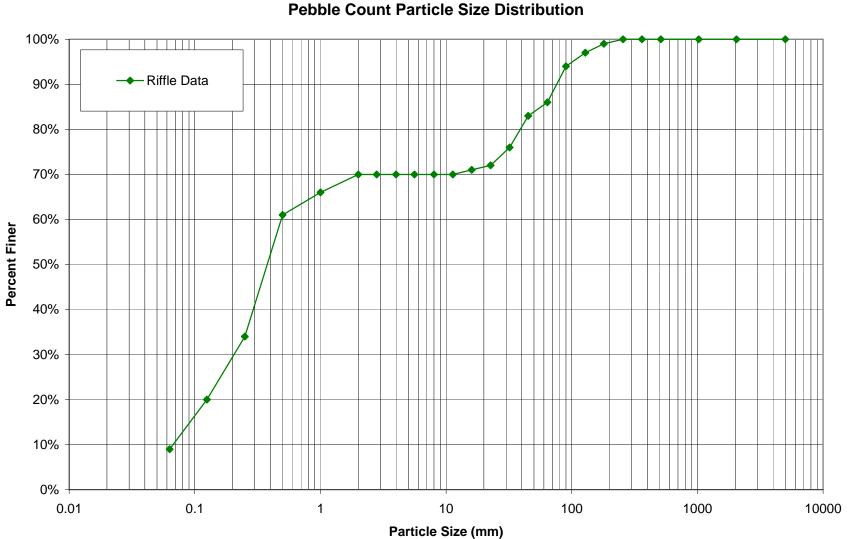
			PARTICLE CLASS COUNT	Sum	mary	Distribution
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum	Plot Size (mm)
SILT/CLAY	Silt / Clay	< .063	43	43%	43%	0.063
	Very Fine	.063125	5	5%	48%	0.125
S	Fine	.12525	27	27%	75%	0.25
Α	Medium	.2550	13	13%	88%	0.50
N D	Coarse	.50 - 1.0	7	7%	95%	1.0
	Very Coarse	1.0 - 2.0	3	3%	98%	2.0
22887	Very Fine	2.0 - 2.8			98%	2.8
n Sol a	Very Fine	2.8 - 4.0	1	1%	99%	4.0
COP A SS	Fine	4.0 - 5.6			99%	5.6
G C C C R C €	Fine	5.6 - 8.0			99%	8.0
	Medium	8.0 - 11.0	1	1%	100%	11.3
	Medium	11.0 - 16.0			100%	16.0
SOJE POO	Coarse	16.0 - 22.6			100%	22.6
092 SRC	Coarse	22.6 - 32			100%	32
100 QQ	Very Coarse	32 - 45			100%	45
	Very Coarse	45 - 64			100%	64
OQC	Small	64 - 90			100%	90
	Small	90 - 128			100%	128
	Large	128 - 180			100%	180
000	Large	180 - 256			100%	256
$\langle \rangle$	Small	256 - 362			100%	362
	Small	362 - 512			100%	512
BOULDER	Medium	512 - 1024			100%	1024
$\gamma \rightarrow$	Large-Very Large	1024 - 2048			100%	2048
BEDROCK	Bedrock	> 2048			100%	5000
		Total	100	100%		

ze (mm))63 125 25 50 .0 .0 .8 .0 .6 .0 .3 6.0 2.6 2 5 64 0 28 80 56 62 12 24 48 00

Largest particles:

(pool)

UT1 X13-Pool Pebble Count Particle Size Distribution


	BAKER PROJECT NO. 108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring
REACH/LOCATION:	UT1 X14-Riffle
DATE COLLECTED:	11/11/2008
FIELD COLLECTION BY:	IE/CT
DATA ENTRY BY:	KS

			PARTICLE CLASS COUNT	Sum	mary	Distri
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum	Plot Si
SILT/CLAY	Silt / Clay	< .063	9	9%	9%	0.
	Very Fine	.063125	11	11%	20%	0.
S	Fine	.12525	14	14%	34%	0
Α	Medium	.2550	27	27%	61%	0
N D	Coarse	.50 - 1.0	5	5%	66%	1
	Very Coarse	1.0 - 2.0	4	4%	70%	2
26888V	Very Fine	2.0 - 2.8			70%	2
$n \beta \alpha \beta \alpha$	Very Fine	2.8 - 4.0			70%	2
CO A CO	Fine	4.0 - 5.6			70%	5
	Fine	5.6 - 8.0			70%	8
	Medium	8.0 - 11.0			70%	1
	Medium	11.0 - 16.0	1	1%	71%	1
001-680	Coarse	16.0 - 22.6	1	1%	72%	2
22 Spc	Coarse	22.6 - 32	4	4%	76%	:
	Very Coarse	32 - 45	7	7%	83%	4
	Very Coarse	45 - 64	3	3%	86%	6
OQQ	Small	64 - 90	8	8%	94%	ę
	Small	90 - 128	3	3%	97%	1
	Large	128 - 180	2	2%	99%	1
000	Large	180 - 256	1	1%	100%	2
\mathcal{O}	Small	256 - 362			100%	3
	Small	362 - 512			100%	5
BOULDER	Medium	512 - 1024			100%	1(
\rightarrow	Large-Very Large	1024 - 2048			100%	20
BEDROCK	Bedrock	> 2048			100%	50

Distribution
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

Largest particles:

(riffle)

UT1 X14-Riffle Pebble Count Particle Size Distribution

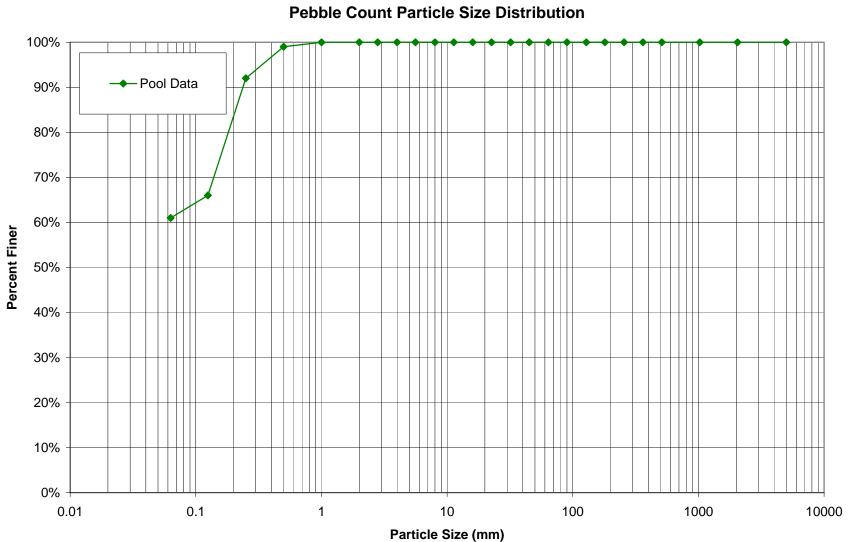
	BAKER PROJECT NO.	108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring	
REACH/LOCATION:	UT1 X15-Riffle	
DATE COLLECTED:	11/10/2008	
FIELD COLLECTION BY:	IE/CT	
DATA ENTRY BY:	KS	

			PARTICLE CLASS COUNT	Sum	mary
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	4	4%	4%
	Very Fine	.063125	3	3%	7%
_	Fine	.12525	21	21%	28%
S	Medium	.2550	27	27%	55%
N	Coarse	.50 - 1.0	29	29%	84%
D	Very Coarse	1.0 - 2.0	8	8%	92%
	Very Fine	2.0 - 2.8	1	1%	93%
moura	Very Fine	2.8 - 4.0	1	1%	94%
89269	Fine	4.0 - 5.6	1	1%	95%
₽GGGG€	Fine	5.6 - 8.0			95%
	Medium	8.0 - 11.0	1	1%	96%
	Medium	11.0 - 16.0	3	3%	99%
SOJE SOC	Coarse	16.0 - 22.6	1	1%	100%
22LDC	Coarse	22.6 - 32			100%
	Very Coarse	32 - 45			100%
0000000	Very Coarse	45 - 64			100%
$\bigcap \bigcap \bigcup \bigcup$	Small	64 - 90			100%
	Small	90 - 128			100%
COBBLE	Large	128 - 180			100%
$OQ \times$	Large	180 - 256			100%
QQY	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
\sim	arge-Very Larg.	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
	-	Total	100	100%	

Distribution
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

Largest particles:

(riffle)


UT1 X15-Riffle Pebble Count Particle Size Distribution

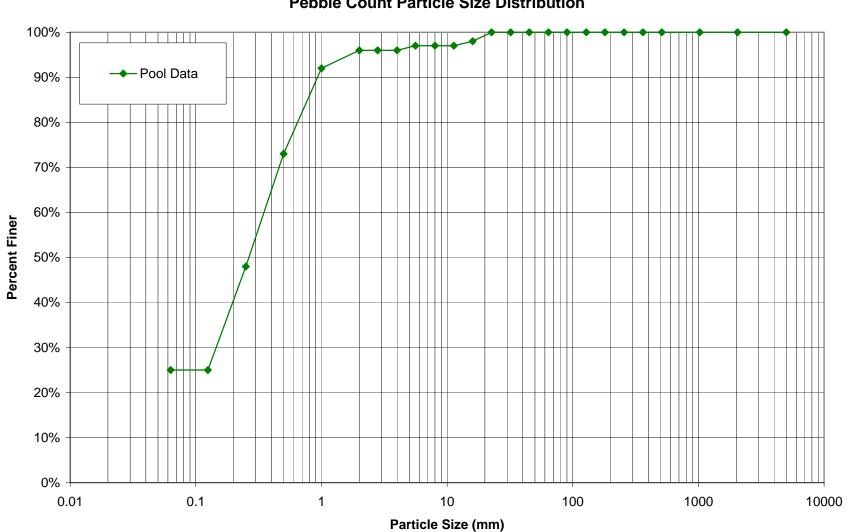
	BAKER PROJECT NO. 108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring
REACH/LOCATION:	UT1 X16-Pool
DATE COLLECTED:	11/10/2008
FIELD COLLECTION BY:	IE/CT
DATA ENTRY BY:	KS

			PARTICLE CLASS COUNT	Summary		Distribution
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum	Plot Size (mm)
SILT/CLAY	Silt / Clay	< .063	61	61%	61%	0.063
	Very Fine	.063125	5	5%	66%	0.125
S	Fine	.12525	26	26%	92%	0.25
Α	Medium	.2550	7	7%	99%	0.50
N D	Coarse	.50 - 1.0	1	1%	100%	1.0
	Very Coarse	1.0 - 2.0			100%	2.0
8888 A	Very Fine	2.0 - 2.8			100%	2.8
00000X	Very Fine	2.8 - 4.0			100%	4.0
000000	Fine	4.0 - 5.6			100%	5.6
	Fine	5.6 - 8.0			100%	8.0
ACC ACC	Medium	8.0 - 11.0			100%	11.3
ČO E PQO	Medium	11.0 - 16.0			100%	16.0
001 L ROOM	Coarse	16.0 - 22.6			100%	22.6
609 KB	Coarse	22.6 - 32			100%	32
	Very Coarse	32 - 45			100%	45
	Very Coarse	45 - 64			100%	64
OQS	Small	64 - 90			100%	90
COBBLE	Small	90 - 128			100%	128
	Large	128 - 180			100%	180
$\overline{000}$	Large	180 - 256			100%	256
2	Small	256 - 362			100%	362
	Small	362 - 512			100%	512
BOULDER	Medium	512 - 1024			100%	1024
\bigcirc	Large-Very Large	1024 - 2048			100%	2048
BEDROCK	Bedrock	> 2048			100%	5000
		Total	100	100%		

Largest particles:

(pool)

UT1 X16-Pool Pebble Count Particle Size Distribution


	BAKER PROJECT NO. 108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring
REACH/LOCATION:	UT1 X17-Pool
DATE COLLECTED:	11/10/2008
FIELD COLLECTION BY:	IE/CT
DATA ENTRY BY:	KS

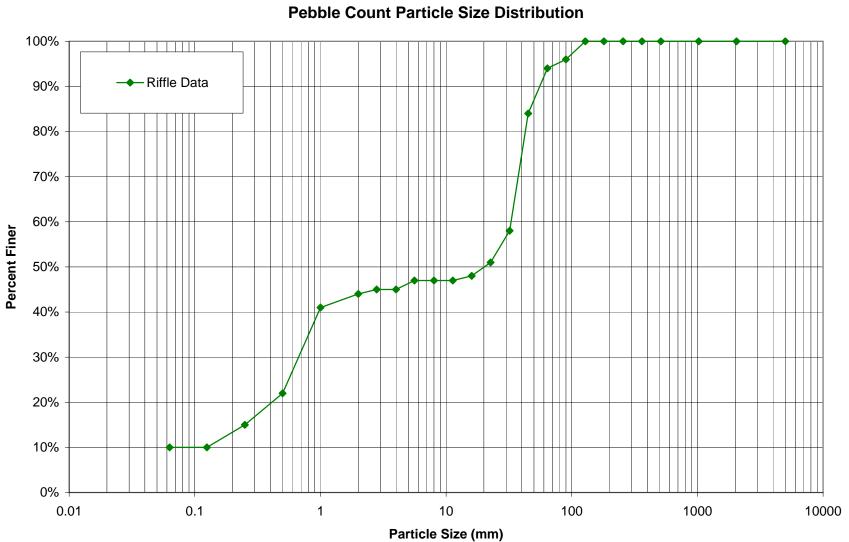
			PARTICLE CLASS COUNT	Sum	mary	Distri	ibution
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum	Plot Si	ize (mm)
SILT/CLAY	Silt / Clay	< .063	25	25%	25%	0.	063
	Very Fine	.063125			25%	0.	125
S	Fine	.12525	23	23%	48%	0	.25
A	Medium	.2550	25	25%	73%	0	.50
N D	Coarse	.50 - 1.0	19	19%	92%	1	1.0
	Very Coarse	1.0 - 2.0	4	4%	96%	2	2.0
86 8 564	Very Fine	2.0 - 2.8			96%	2	2.8
000000	Very Fine	2.8 - 4.0			96%	2	4.0
00000000	Fine	4.0 - 5.6	1	1%	97%	5	5.6
	Fine	5.6 - 8.0			97%	8	3.0
	Medium	8.0 - 11.0			97%	1	1.3
	Medium	11.0 - 16.0	1	1%	98%	1	6.0
	Coarse	16.0 - 22.6	2	2%	100%	2	2.6
669 68	Coarse	22.6 - 32			100%	:	32
	Very Coarse	32 - 45			100%	4	45
	Very Coarse	45 - 64			100%	6	64
OQC	Small	64 - 90			100%	ę	90
	Small	90 - 128			100%	1	28
	Large	128 - 180			100%	1	80
000	Large	180 - 256			100%	2	256
$\langle \rangle$	Small	256 - 362			100%	3	62
	Small	362 - 512			100%	5	512
BOULDER	Medium	512 - 1024			100%	1(024
$\gamma \rightarrow$	Large-Very Large	1024 - 2048			100%	20	048
BEDROCK	Bedrock	> 2048			100%	50	000
		Total	100	100%			

e (mm) 63 125 25 50 .0 .0 .8 .0 .6 .0 .3 .0 .6 2 5 64 28 30 56 62 12 24 48 000

Largest particles:

(pool)

UT1 X17-Pool Pebble Count Particle Size Distribution


	BAKER PROJECT NO.	108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring	
REACH/LOCATION:	UT1 X18-Riffle	
DATE COLLECTED:	11/10/2008	
FIELD COLLECTION BY:	IE/CT	
DATA ENTRY BY:	KS	

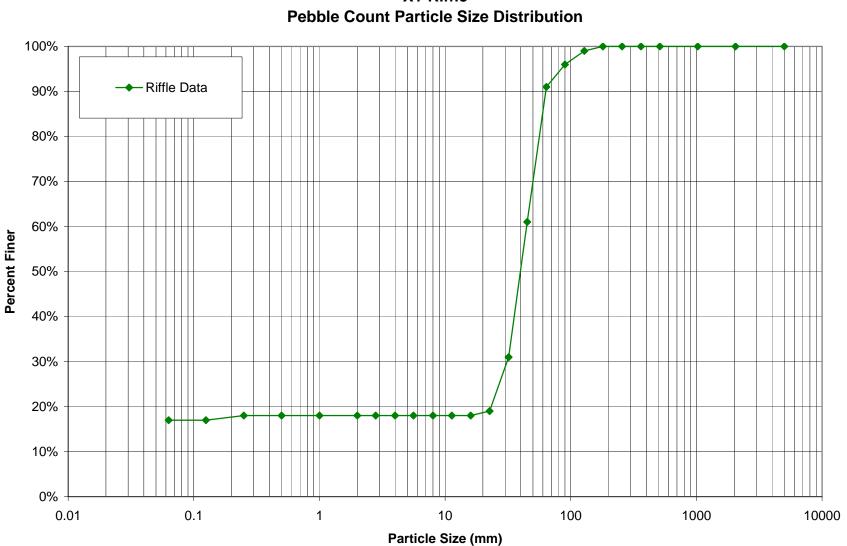
			PARTICLE CLASS COUNT	Sum	mary
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	10	10%	10%
	Very Fine	.063125			10%
_	Fine	.12525	5	5%	15%
S	Medium	.2550	7	7%	22%
N N	Coarse	.50 - 1.0	19	19%	41%
D	Very Coarse	1.0 - 2.0	3	3%	44%
	Very Fine	2.0 - 2.8	1	1%	45%
mour	Very Fine	2.8 - 4.0			45%
89 D G	Fine	4.0 - 5.6	2	2%	47%
p G G G C C	Fine	5.6 - 8.0			47%
	Medium	8.0 - 11.0			47%
	Medium	11.0 - 16.0	1	1%	48%
SOJE SOC	Coarse	16.0 - 22.6	3	3%	51%
201LbBC	Coarse	22.6 - 32	7	7%	58%
	Very Coarse	32 - 45	26	26%	84%
000000	Very Coarse	45 - 64	10	10%	94%
$\bigcap \bigcap \bigcirc \bigcirc$	Small	64 - 90	2	2%	96%
	Small	90 - 128	4	4%	100%
COBBLE	Large	128 - 180			100%
OOX	Large	180 - 256			100%
QOY	Small	256 - 362			100%
	Small	362 - 512			100%
BOULDER	Medium	512 - 1024			100%
$\alpha \wedge \delta$	arge-Very Larg.	1024 - 2048			100%
BEDROCK	Bedrock	> 2048			100%
		Total	100	100%	

Distribution
Plot Size (mm)
0.063
0.125
0.25
0.50
1.0
2.0
2.8
4.0
5.6
8.0
11.3
16.0
22.6
32
45
64
90
128
180
256
362
512
1024
2048
5000

Largest particles:

(riffle)

UT1 X18-Riffle Pebble Count Particle Size Distribution

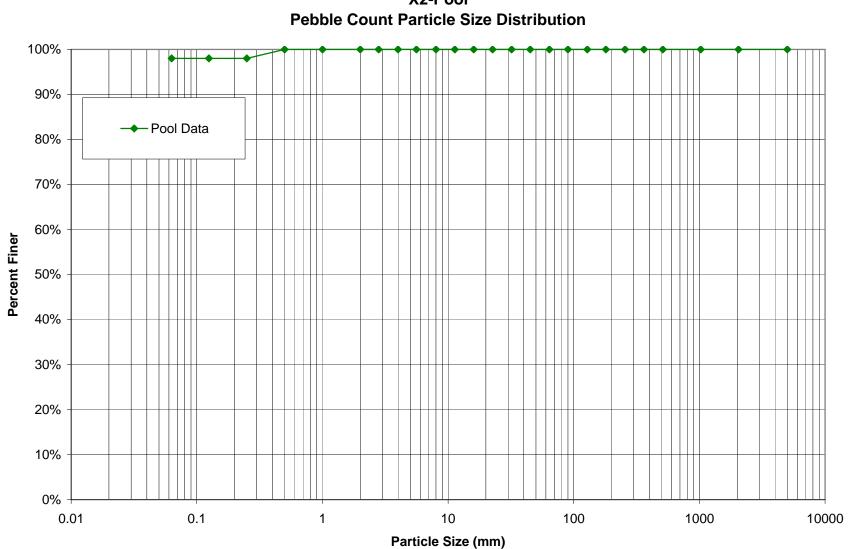

	BUCK PROJECT NO. 108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring
REACH/LOCATION:	UT2A X1-Riffle
DATE COLLECTED:	11/7/2008
FIELD COLLECTION BY:	IE/CT
DATA ENTRY BY:	KS

SILT/CLAY Silt Ve SA M D CC Very Very C C C Very Very Very Very Very Very Very Very	RTICLE t / Clay ary Fine Fine ledium coarse / Coarse ary Fine ry Fine Fine Fine	SIZE (mm) < .063 .063125 .12525 .2550 .50 - 1.0 1.0 - 2.0 2.0 - 2.8 2.8 - 4.0 4.0 - 5.6	Riffle 17 1	Class % 17% 1%	% Cum 17% 17% 18% 18% 18% 18%	Plot 5
S A M N D C Very Very C C Very C C C C C C C C C C C C C C C C C C C	ry Fine Fine ledium coarse / Coarse ry Fine ry Fine	.063125 .12525 .2550 .50 - 1.0 1.0 - 2.0 2.0 - 2.8 2.8 - 4.0			17% 18% 18% 18% 18%	(
S A N D C Very Very C C C C C C C C C C C C C C C C C C C	Fine Fine coarse / Coarse rry Fine rry Fine	.12525 .2550 .50 - 1.0 1.0 - 2.0 2.0 - 2.8 2.8 - 4.0	1	1%	18% 18% 18% 18%	
S A N D C Very Very C C C C C C C C C C C C C C C C C C C	edium coarse / Coarse rry Fine rry Fine	.2550 .50 - 1.0 1.0 - 2.0 2.0 - 2.8 2.8 - 4.0	1	1%	18% 18% 18%	
A N D C Very	coarse / Coarse ry Fine ry Fine	.50 - 1.0 1.0 - 2.0 2.0 - 2.8 2.8 - 4.0			18% 18%	
D C Very Very Very Very Very Very Very Very Very Very Very M Very M Very M Very Very	/ Coarse ery Fine ery Fine	1.0 - 2.0 2.0 - 2.8 2.8 - 4.0			18%	
G Ve G G A M C C	ery Fine ery Fine	2.0 - 2.8 2.8 - 4.0				
G G R A C C C C C C C C C C C C C C C C C C	ery Fine	2.8 - 4.0			4.001	
G G R A M C C C C C C C C C C C C C					18%	
G M A M K M K M K C K <td>Fine</td> <td>4.0 - 5.6</td> <td></td> <td></td> <td>18%</td> <td></td>	Fine	4.0 - 5.6			18%	
R A W E C C C C C C C C C C C C C C C C C C					18%	
V V M C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C	Fine	5.6 - 8.0			18%	
	edium	8.0 - 11.0			18%	
COBBLE COBBLE COBBLE COBBLE	edium	11.0 - 16.0			18%	
COBBLE CO	oarse	16.0 - 22.6	1	1%	19%	
	oarse	22.6 - 32	12	12%	31%	
	/ Coarse	32 - 45	30	30%	61%	
	/ Coarse	45 - 64	30	30%	91%	
	Small	64 - 90	5	5%	96%	
	Small	90 - 128	3	3%	99%	
	_arge	128 - 180	1	1%	100%	
	_arge	180 - 256			100%	
		256 - 362			100%	
	Small	362 - 512			100%	
BOULDER	Small Small	512 - 1024			100%	
-		312 1024			100%	:
BEDROCK Be	Small	1024 - 2048			100%	:
·····	Small Iedium					

Distribution				
Plot Size (mm)				
0.063				
0.125				
0.25				
0.50				
1.0				
2.0				
2.8				
4.0				
5.6				
8.0				
11.3				
16.0				
22.6				
32				
45				
64				
90				
128				
180				
256				
362				
512				
1024				
2048				
5000				

Largest particles:

(riffle)


UT2A X1-Riffle Pebble Count Particle Size Distribution

		BUCK PROJECT NO.	108528			
SITE OR PROJECT:	Beaverdam (Beaverdam Creek 2nd Year Monitoring				
REACH/LOCATION:	UT2A X2-Po	UT2A X2-Pool				
DATE COLLECTED:	11/7/2008					
FIELD COLLECTION BY:	IE/CT					
DATA ENTRY BY:	KS					

			PARTICLE CLASS COUNT	Summary			Distribution
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum		Plot Size (mm)
SILT/CLAY	Silt / Clay	< .063	98	98%	98%		0.063
5	Very Fine	.063125			98%		0.125
	Fine	.12525			98%		0.25
Α	Medium	.2550	2	2%	100%		0.50
N D	Coarse	.50 - 1.0			100%		1.0
	Very Coarse	1.0 - 2.0			100%	[2.0
8888 A	Very Fine	2.0 - 2.8			100%		2.8
00000X	Very Fine	2.8 - 4.0			100%		4.0
00 A 85	Fine	4.0 - 5.6			100%		5.6
	Fine	5.6 - 8.0			100%		8.0
ACA ACOS	Medium	8.0 - 11.0			100%		11.3
EP20	Medium	11.0 - 16.0			100%	[16.0
001 L ROO	Coarse	16.0 - 22.6			100%		22.6
609 195-	Coarse	22.6 - 32			100%		32
	Very Coarse	32 - 45			100%		45
	Very Coarse	45 - 64			100%		64
OQ	Small	64 - 90			100%		90
COBBLE	Small	90 - 128			100%		128
	Large	128 - 180			100%		180
000	Large	180 - 256			100%		256
2	Small	256 - 362			100%		362
	Small	362 - 512			100%		512
BOULDER	Medium	512 - 1024			100%		1024
	Large-Very Large	1024 - 2048			100%		2048
BEDROCK	Bedrock	> 2048			100%		5000
		Total	100	100%			

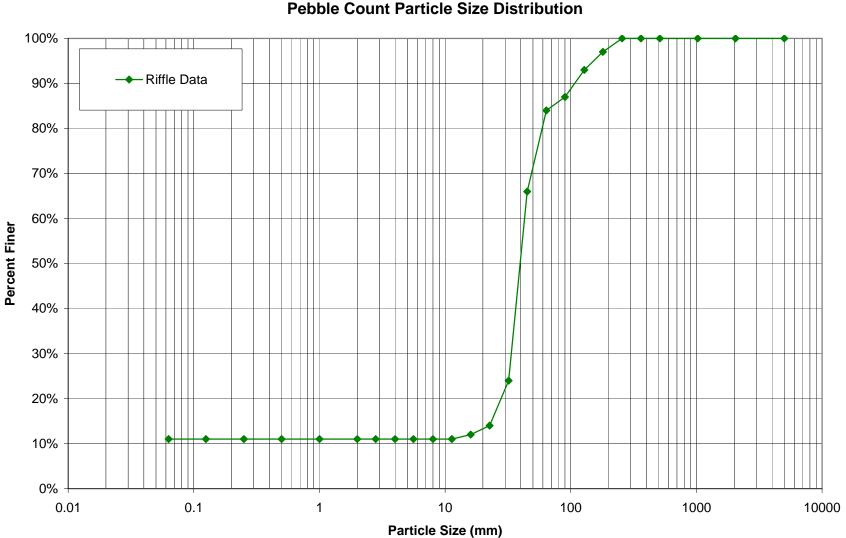
Largest particles:

(pool)

UT2A X2-Pool Pebble Count Particle Size Distribution

PEBBLE COUNT DATA SHEET: RIFFLE 100-COUNT

	BUCK PROJECT NO. 108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring
REACH/LOCATION:	UT2 X3-Riffle
DATE COLLECTED:	11/4/2008
FIELD COLLECTION BY:	IE/KS
DATA ENTRY BY:	KS


			PARTICLE CLASS COUNT	Sum	mary	Distribution
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum	Plot Size (mm)
SILT/CLAY	Silt / Clay	< .063	11	11%	11%	0.063
	Very Fine	.063125			11%	0.125
S	Fine	.12525			11%	0.25
Α	Medium	.2550			11%	0.50
N D	Coarse	.50 - 1.0			11%	1.0
	Very Coarse	1.0 - 2.0			11%	2.0
88 8 24	Very Fine	2.0 - 2.8			11%	2.8
000000	Very Fine	2.8 - 4.0			11%	4.0
0000000	Fine	4.0 - 5.6			11%	5.6
	Fine	5.6 - 8.0			11%	8.0
	Medium	8.0 - 11.0			11%	11.3
EPAN	Medium	11.0 - 16.0	1	1%	12%	16.0
	Coarse	16.0 - 22.6	2	2%	14%	22.6
6001 (08-	Coarse	22.6 - 32	10	10%	24%	32
0060000	Very Coarse	32 - 45	42	42%	66%	45
	Very Coarse	45 - 64	18	18%	84%	64
OQQ	Small	64 - 90	3	3%	87%	90
$\Delta \Delta \mathcal{Y}$	Small	90 - 128	6	6%	93%	128
	Large	128 - 180	4	4%	97%	180
000	Large	180 - 256	3	3%	100%	256
20	Small	256 - 362			100%	362
	Small	362 - 512			100%	512
BOULDER	Medium	512 - 1024			100%	1024
\rightarrow	Large-Very Large	1024 - 2048			100%	2048
BEDROCK	Bedrock	> 2048			100%	5000
		Total	100	100%		

ize (mm) .063 .125).25).50 1.0 2.0 2.8 4.0 5.6 8.0 1.3 6.0 22.6 32 45 64 90 128 180 256 362 512 024 048 000

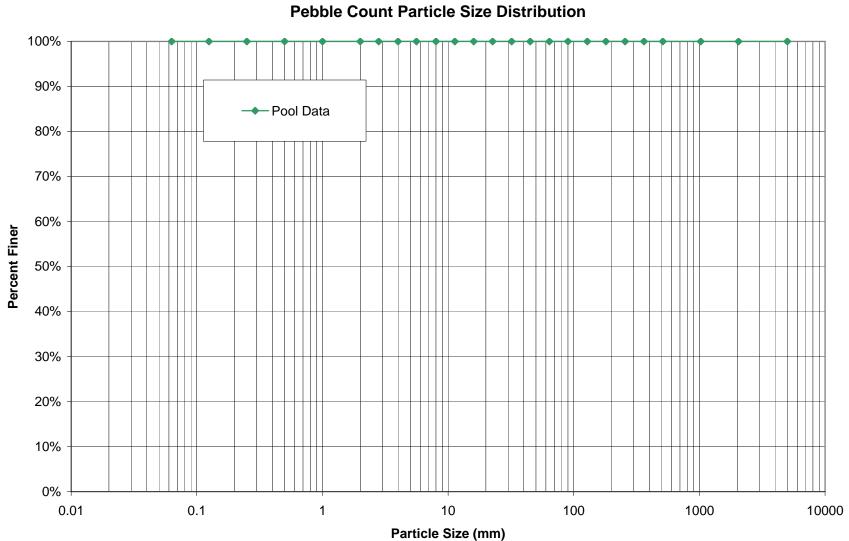
Largest particles:

(riffle)

Beaverdam Creek, EEP Contract No. D05016-1, River Works, Inc. December 2008, Monitoring Year 2 - Draft

UT2 X3-Riffle Pebble Count Particle Size Distribution

PEBBLE COUNT DATA SHEET: POOL 100-COUNT


		BUCK PROJECT NO.	108528
SITE OR PROJECT:	Beaverdam (Creek 2nd Year Monitoring	
REACH/LOCATION:	UT2 X4-Pool		
DATE COLLECTED:	11/4/2008		
FIELD COLLECTION BY:	IE/KS		
DATA ENTRY BY:	KS		

			PARTICLE CLASS COUNT	Summary		Distribution
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum	Plot Size (mm)
SILT/CLAY	Silt / Clay	< .063	100	100%	100%	0.063
	Very Fine	.063125			100%	0.125
S	Fine	.12525			100%	0.25
Α	Medium	.2550			100%	0.50
N D	Coarse	.50 - 1.0			100%	1.0
	Very Coarse	1.0 - 2.0			100%	2.0
SS BBA	Very Fine	2.0 - 2.8			100%	2.8
00000X	Very Fine	2.8 - 4.0			100%	4.0
000000	Fine	4.0 - 5.6			100%	5.6
	Fine	5.6 - 8.0			100%	8.0
ACA ACOS	Medium	8.0 - 11.0			100%	11.3
EP20	Medium	11.0 - 16.0			100%	16.0
Ogg L Roo	Coarse	16.0 - 22.6			100%	22.6
609 [VB	Coarse	22.6 - 32			100%	32
	Very Coarse	32 - 45			100%	45
	Very Coarse	45 - 64			100%	64
OQS	Small	64 - 90			100%	90
COBBLE	Small	90 - 128			100%	128
	Large	128 - 180			100%	180
000	Large	180 - 256			100%	256
20	Small	256 - 362			100%	362
	Small	362 - 512			100%	512
BOULDER	Medium	512 - 1024			100%	1024
\sim	Large-Very Large	1024 - 2048			100%	2048
BEDROCK	Bedrock	> 2048			100%	5000
		Total	100	100%		

Largest particles:

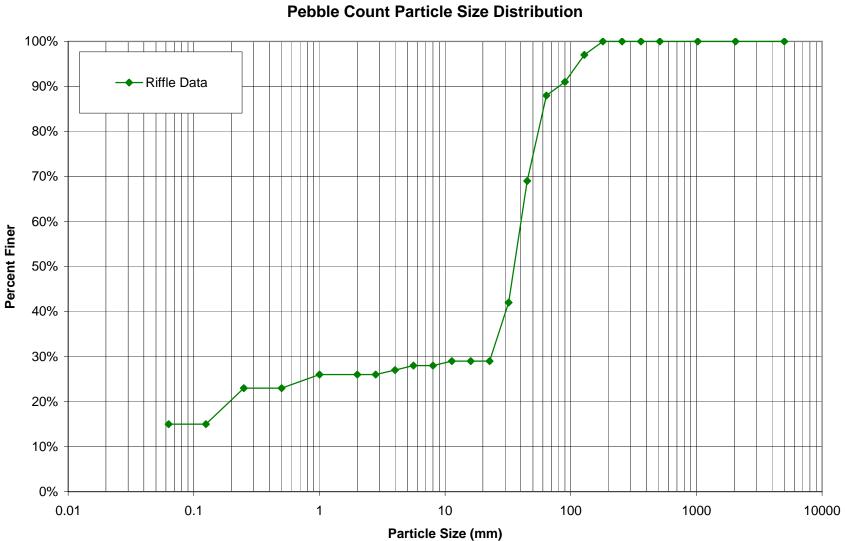
(pool)

Beaverdam Creek, EEP Contract No. D05016-1, River Works, Inc. December 2008, Monitoring Year 2 - Draft

UT2 X4-Pool Pebble Count Particle Size Distribution

PEBBLE COUNT DATA SHEET: RIFFLE 100-COUNT

	BUCK PROJECT NO. 108528
SITE OR PROJECT:	Beaverdam Creek 2nd Year Monitoring
REACH/LOCATION:	UT2 X5-Riffle
DATE COLLECTED:	11/7/2008
FIELD COLLECTION BY:	IE/CT
DATA ENTRY BY:	KS


			PARTICLE CLASS COUNT	Sum	mary	Distr	
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum	Plot Siz	
SILT/CLAY	Silt / Clay	< .063	15	15%	15%	0.0	
	Very Fine	.063125			15%	0.4	
S	Fine	.12525	8	8%	23%	0.	
Α	Medium	.2550			23%	0.	
N D	Coarse	.50 - 1.0	3	3%	26%	1	
	Very Coarse	1.0 - 2.0			26%	2	
99 92 84	Very Fine	2.0 - 2.8			26%	2	
200000	Very Fine	2.8 - 4.0	1	1%	27%	4	
00 A 30	Fine	4.0 - 5.6	1	1%	28%	5	
	Fine	5.6 - 8.0			28%	8	
22 A COS	Medium	8.0 - 11.0	1	1%	29%	11	
	Medium	11.0 - 16.0			29%	16	
	Coarse	16.0 - 22.6			29%	22	
6061.08-	Coarse	22.6 - 32	13	13%	42%	3	
0000000	Very Coarse	32 - 45	27	27%	69%	4	
	Very Coarse	45 - 64	19	19%	88%	e	
OQQ	Small	64 - 90	3	3%	91%	ç	
	Small	90 - 128	6	6%	97%	1	
	Large	128 - 180	3	3%	100%	1	
000	Large	180 - 256			100%	2	
\mathcal{O}	Small	256 - 362			100%	3	
	Small	362 - 512			100%	5	
BOULDER	Medium	512 - 1024			100%	10	
\rightarrow	Large-Very Large	1024 - 2048			100%	20	
BEDROCK	Bedrock	> 2048			100%	50	
		Total	100	100%			

ribution Size (mm) 0.63).125 0.25 0.50 1.0 2.0 2.8 4.0 5.6 8.0 11.3 16.0 22.6 32 45 64 90 128 180 256 362 512 1024 2048 5000

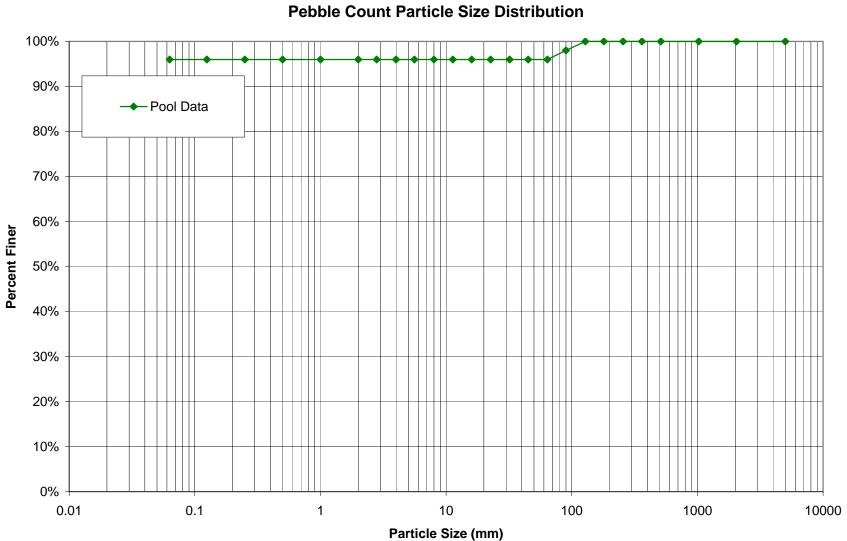
Largest particles:

(riffle)

Beaverdam Creek, EEP Contract No. D05016-1, River Works, Inc. December 2008, Monitoring Year 2 - Draft

UT2 X5-Riffle Pebble Count Particle Size Distribution

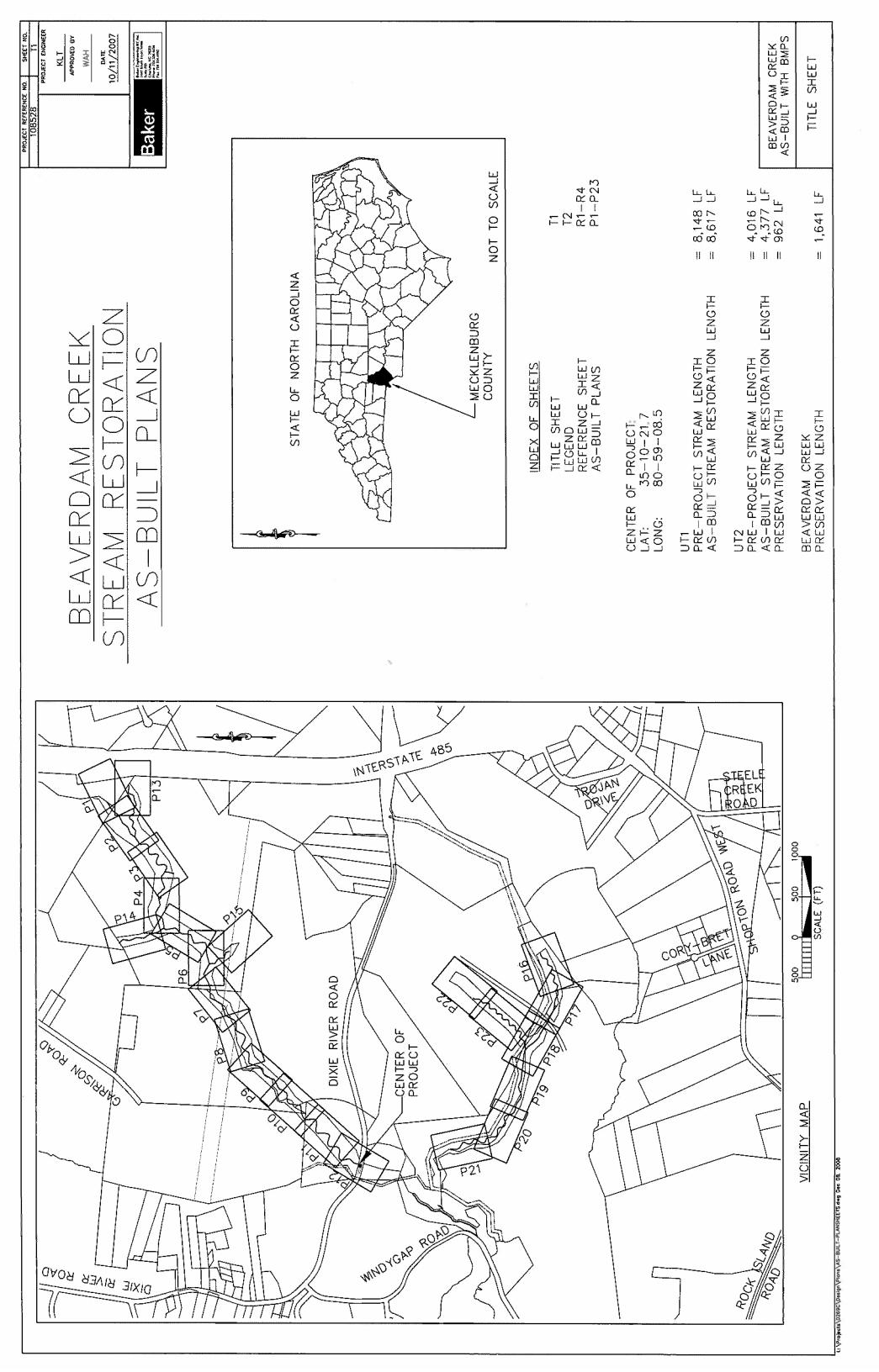
PEBBLE COUNT DATA SHEET: POOL 100-COUNT

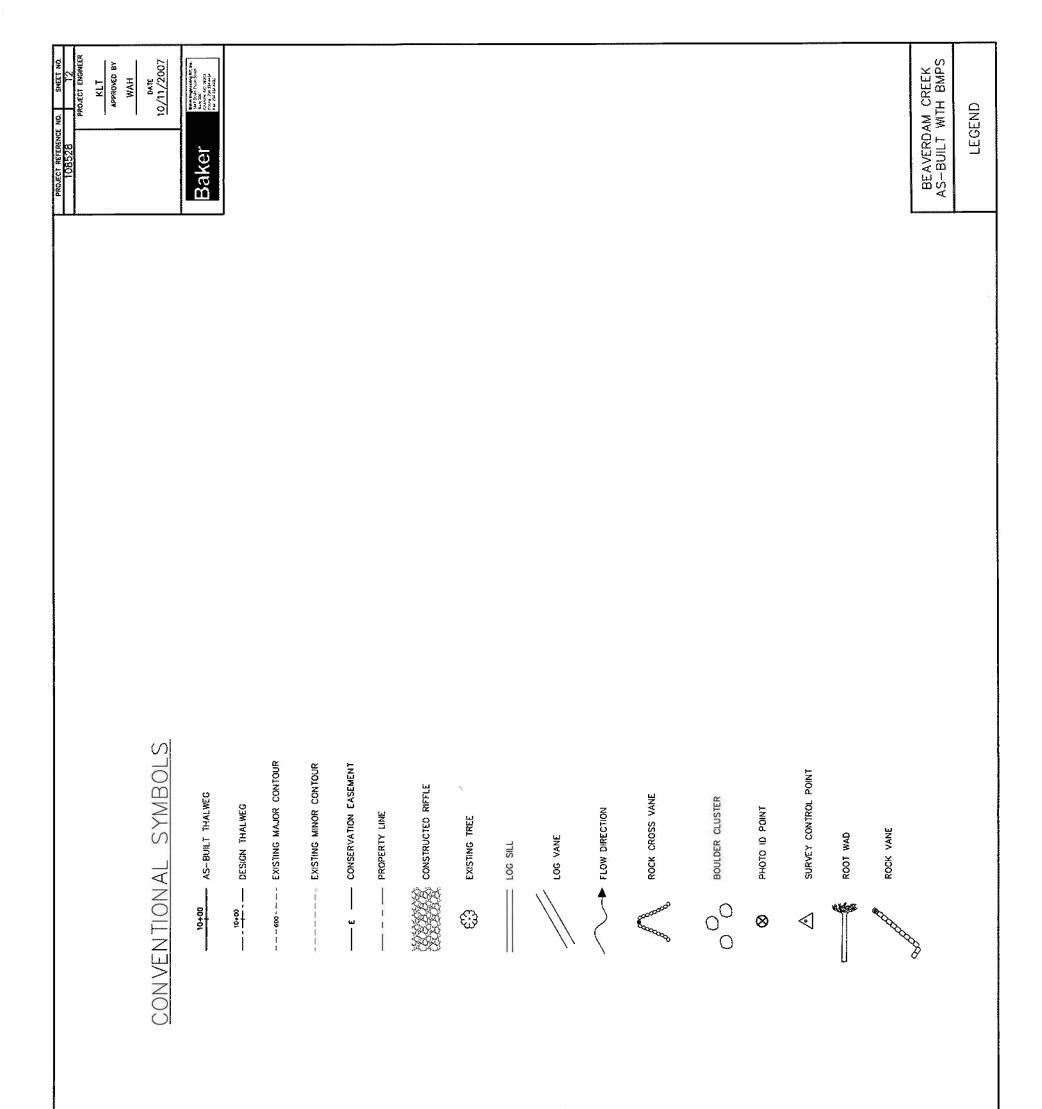

		BUCK PROJECT NO.	108528
SITE OR PROJECT:	Beaverdam (Creek 2nd Year Monitoring	
REACH/LOCATION:	UT2 X6-Pool		
DATE COLLECTED:	11/7/2008		
FIELD COLLECTION BY:	IE/CT		
DATA ENTRY BY:	KS		

			PARTICLE CLASS COUNT	Summary		Distribution
MATERIAL	PARTICLE	SIZE (mm)	Pool	Class %	% Cum	Plot Size (mm)
SILT/CLAY	Silt / Clay	< .063	96	96%	96%	0.063
	Very Fine	.063125			96%	0.125
S	Fine	.12525			96%	0.25
A	Medium	.2550			96%	0.50
N D	Coarse	.50 - 1.0			96%	1.0
	Very Coarse	1.0 - 2.0			96%	2.0
88 3 84	Very Fine	2.0 - 2.8			96%	2.8
00000X	Very Fine	2.8 - 4.0			96%	4.0
	Fine	4.0 - 5.6			96%	5.6
	Fine	5.6 - 8.0			96%	8.0
ACA ACOS	Medium	8.0 - 11.0			96%	11.3
ČO E PQ	Medium	11.0 - 16.0			96%	16.0
001 L ROOM	Coarse	16.0 - 22.6			96%	22.6
609 100-	Coarse	22.6 - 32			96%	32
	Very Coarse	32 - 45			96%	45
	Very Coarse	45 - 64			96%	64
OQS	Small	64 - 90	2	2%	98%	90
COBBLE	Small	90 - 128	2	2%	100%	128
	Large	128 - 180			100%	180
000	Large	180 - 256			100%	256
2	Small	256 - 362			100%	362
	Small	362 - 512			100%	512
BOULDER	Medium	512 - 1024			100%	1024
\supset	Large-Very Large	1024 - 2048			100%	2048
BEDROCK	Bedrock	> 2048			100%	5000
		Total	100	100%		

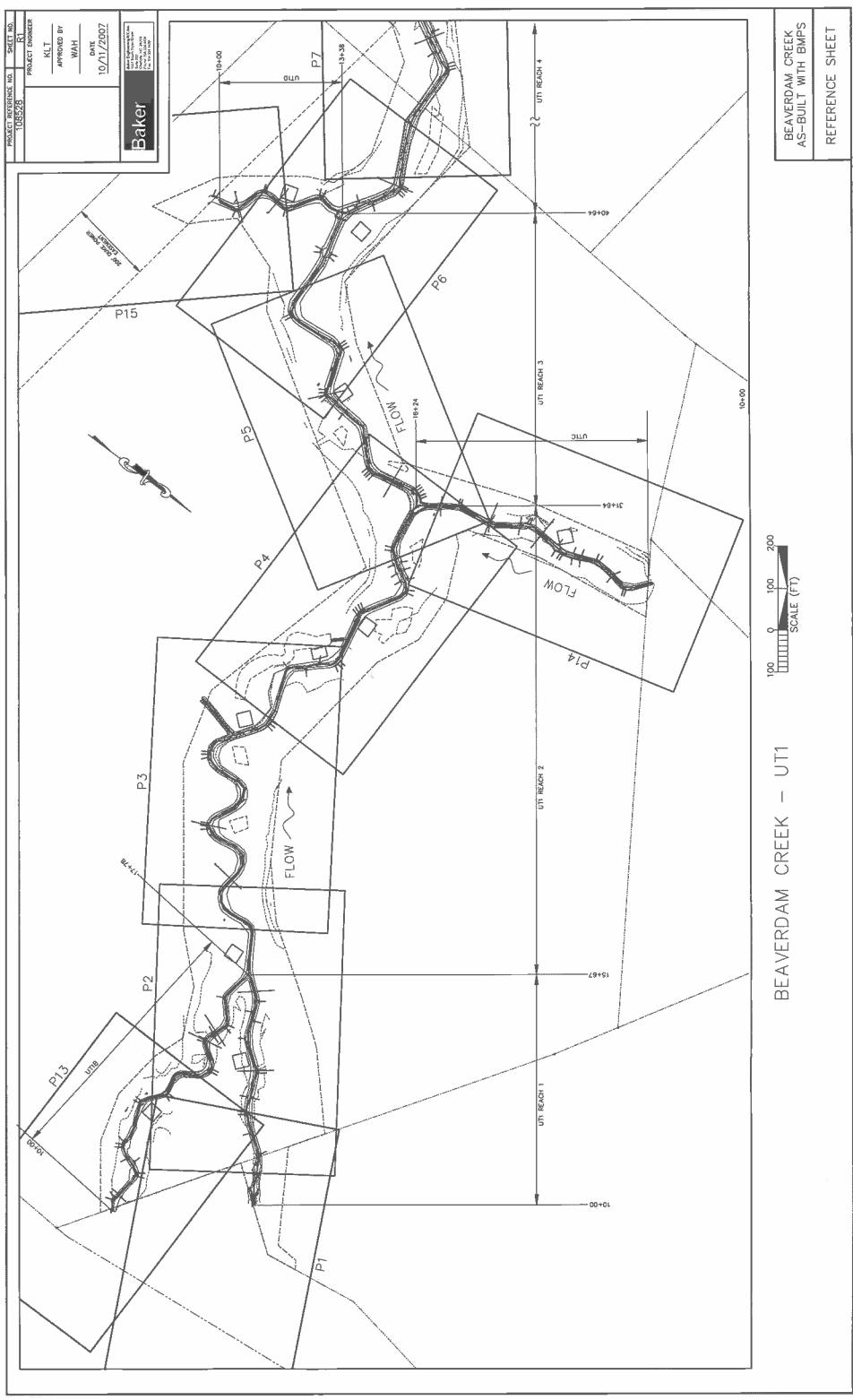
Largest particles:

(pool)

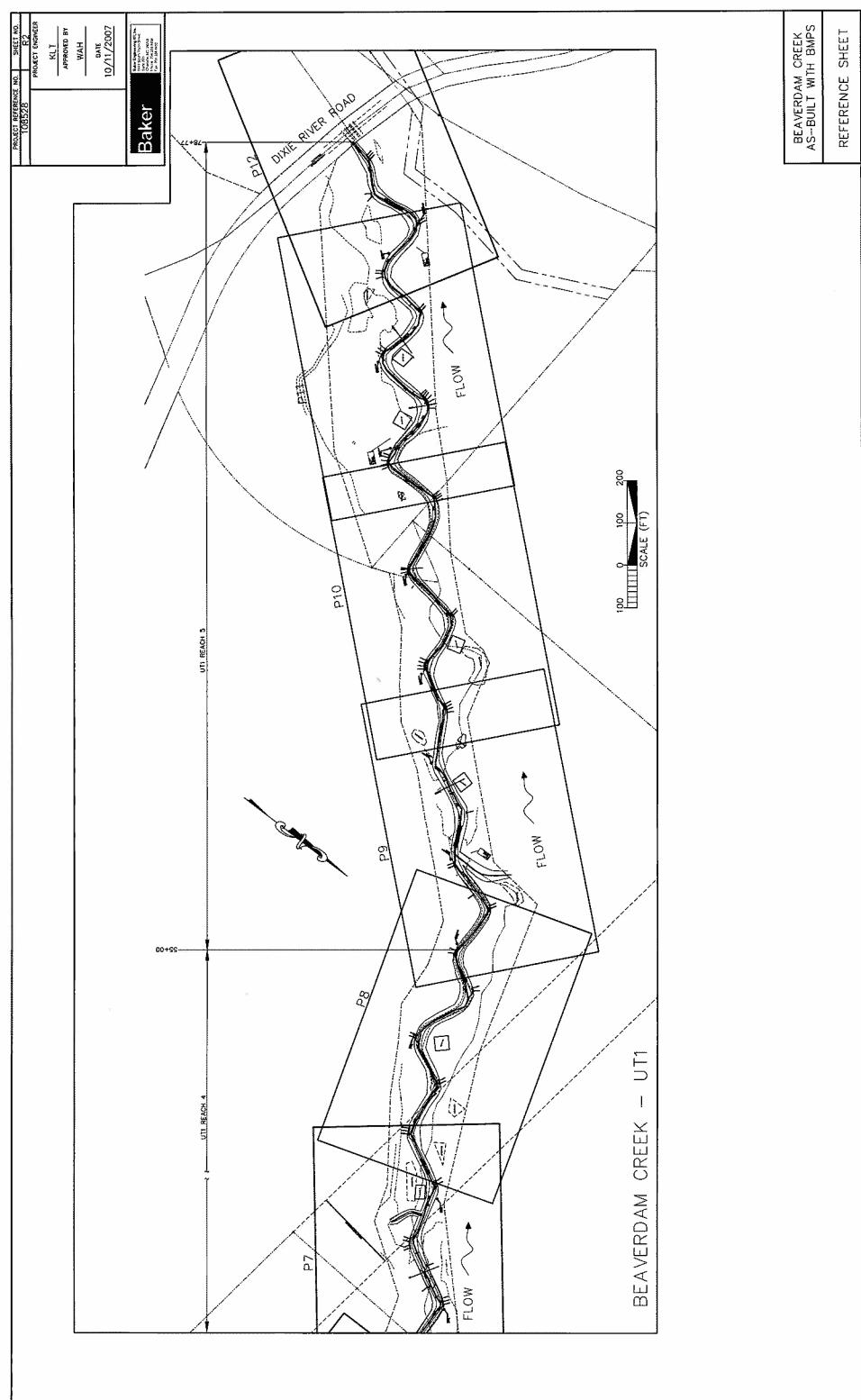

Beaverdam Creek, EEP Contract No. D05016-1, River Works, Inc. December 2008, Monitoring Year 2 - Draft

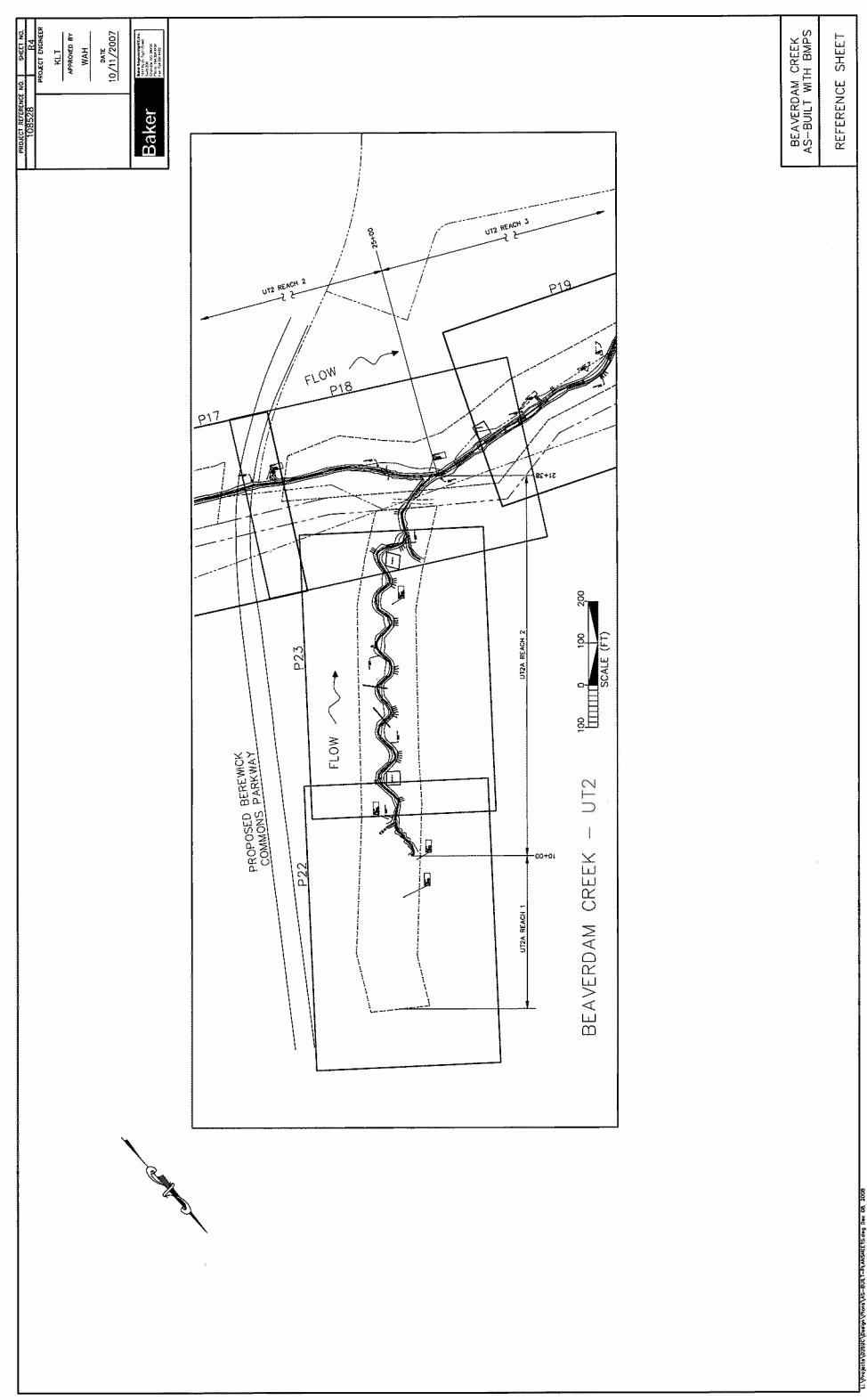


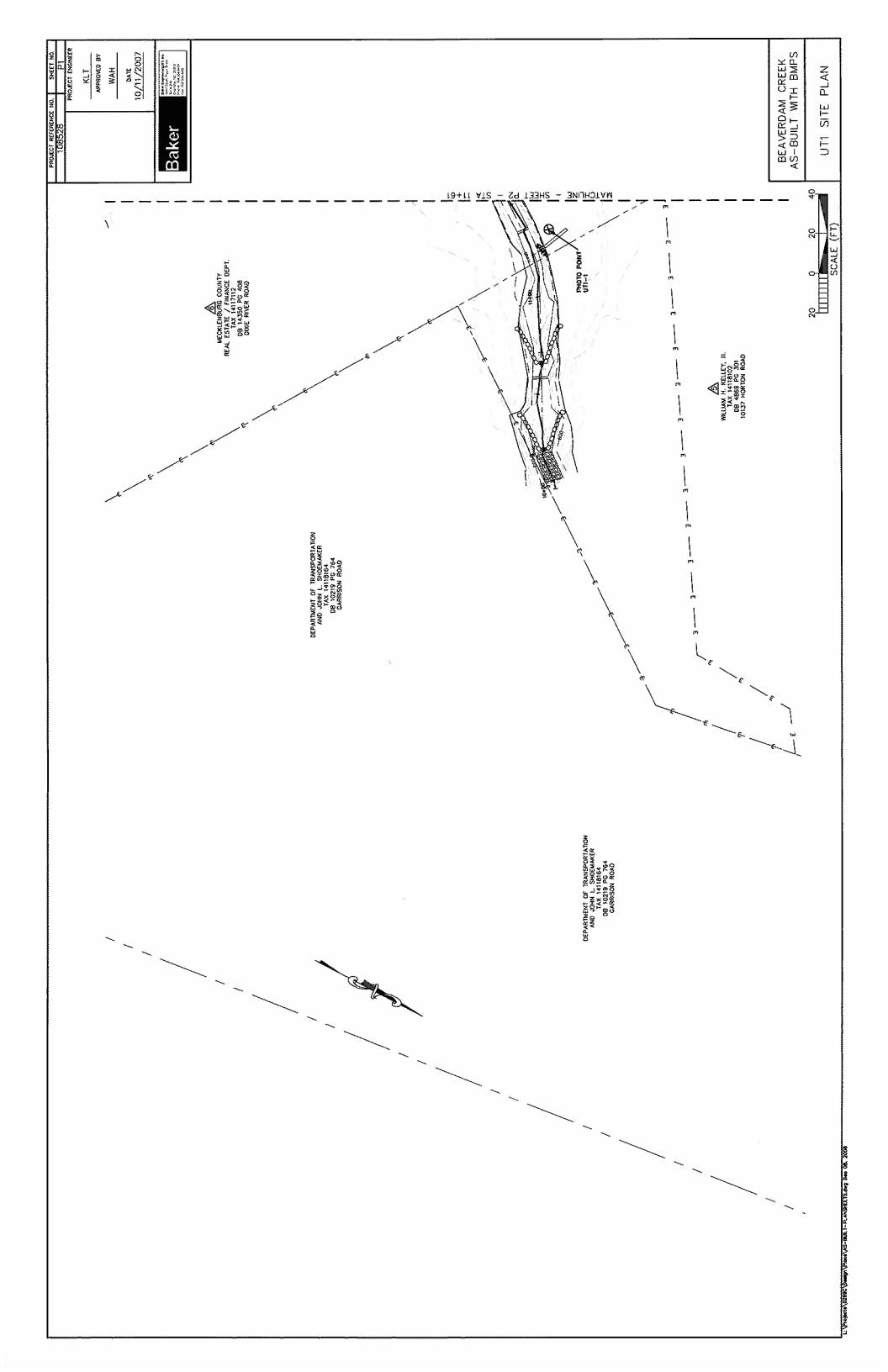
UT2 X6-Pool Pebble Count Particle Size Distribution

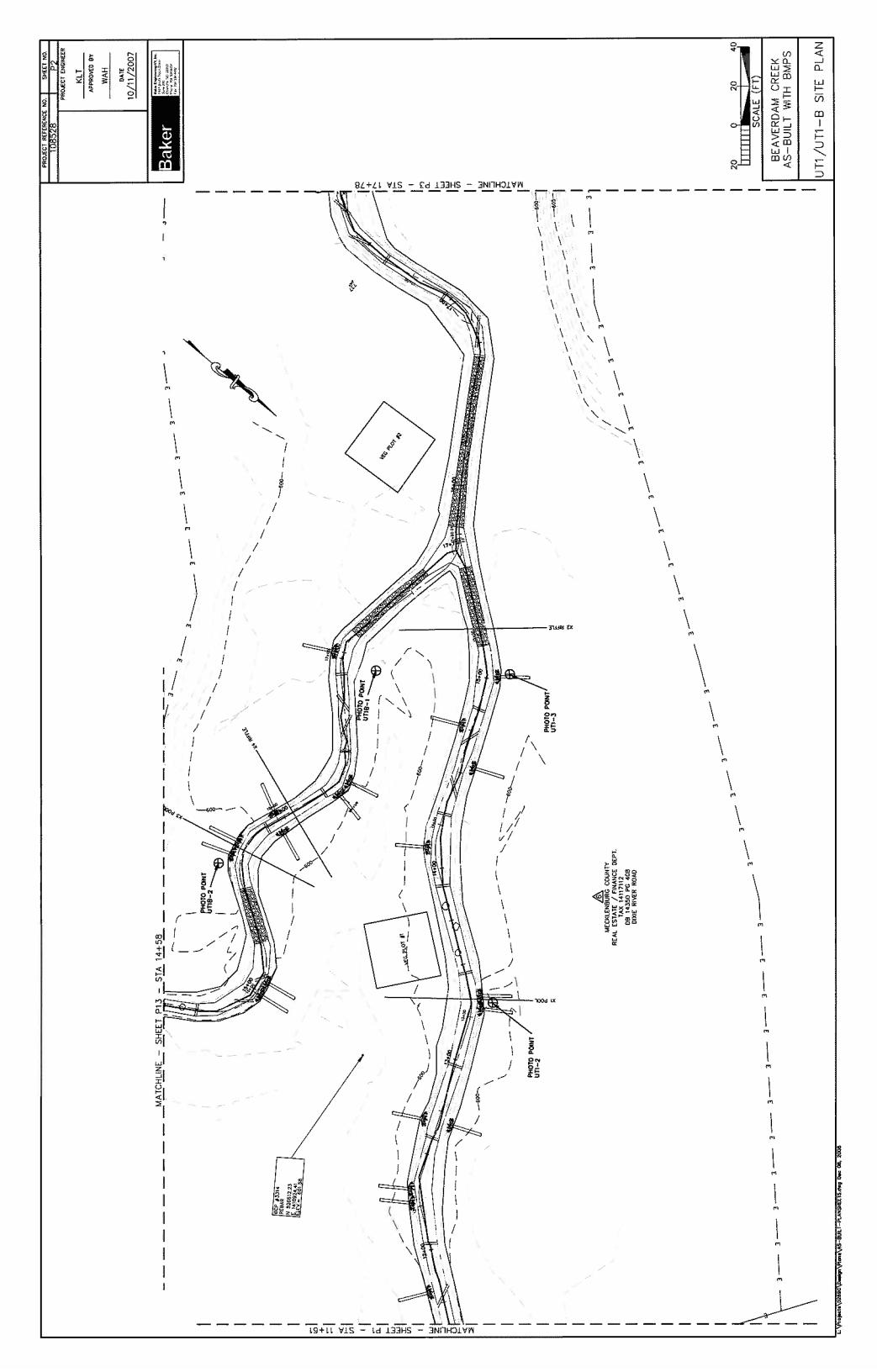

APPENDIX C

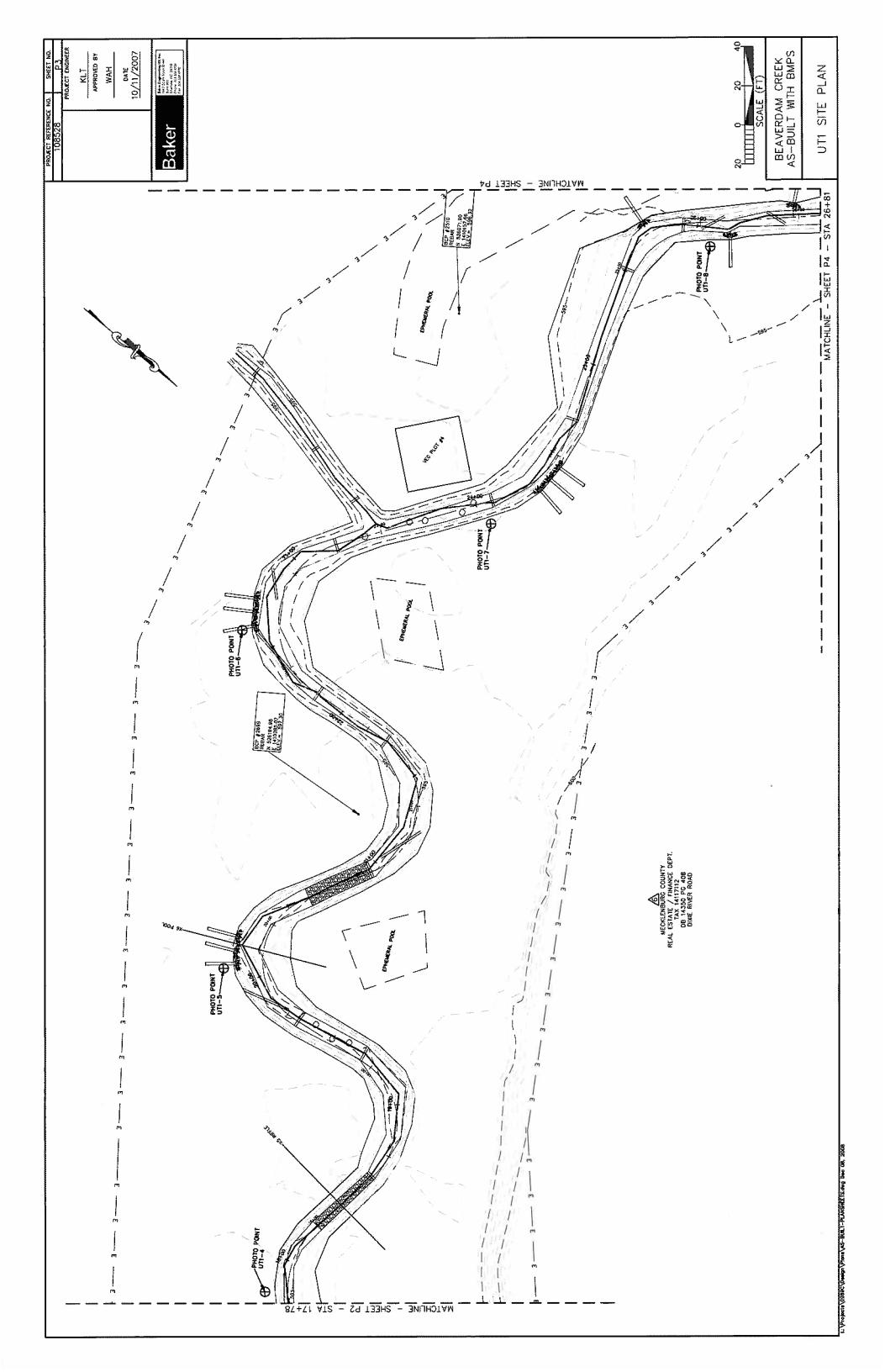
AS-BUILT PLAN SHEETS

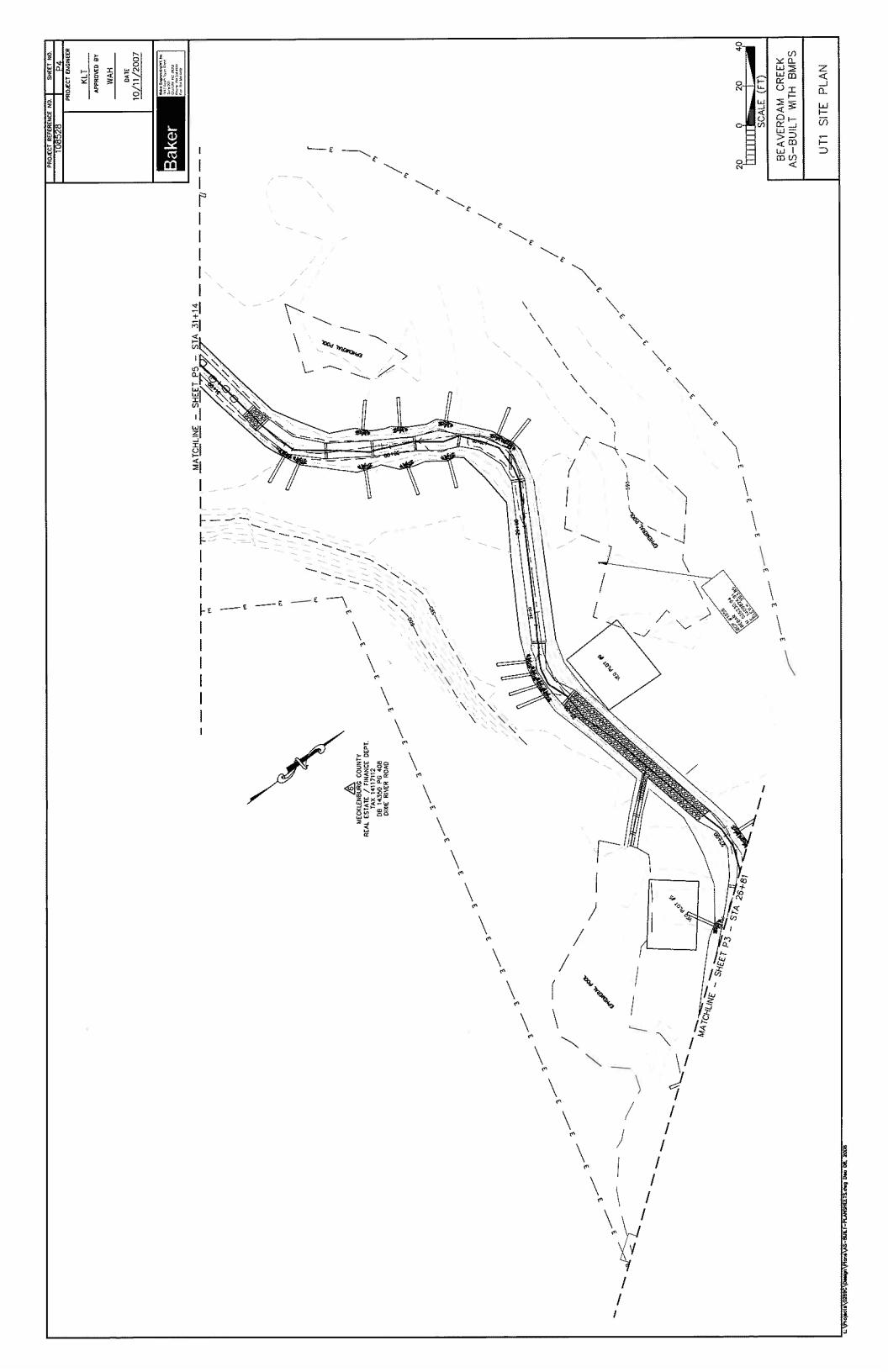


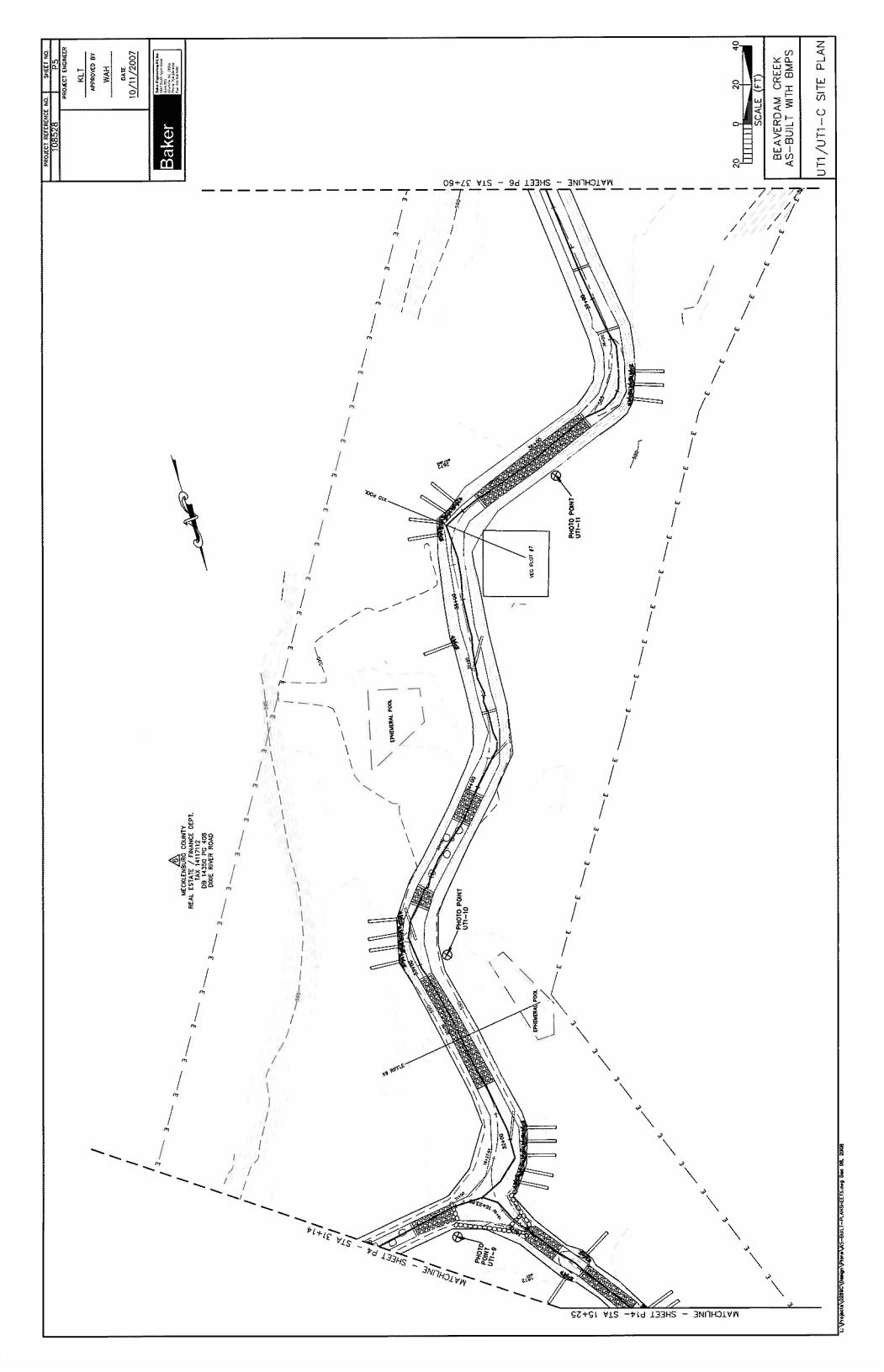


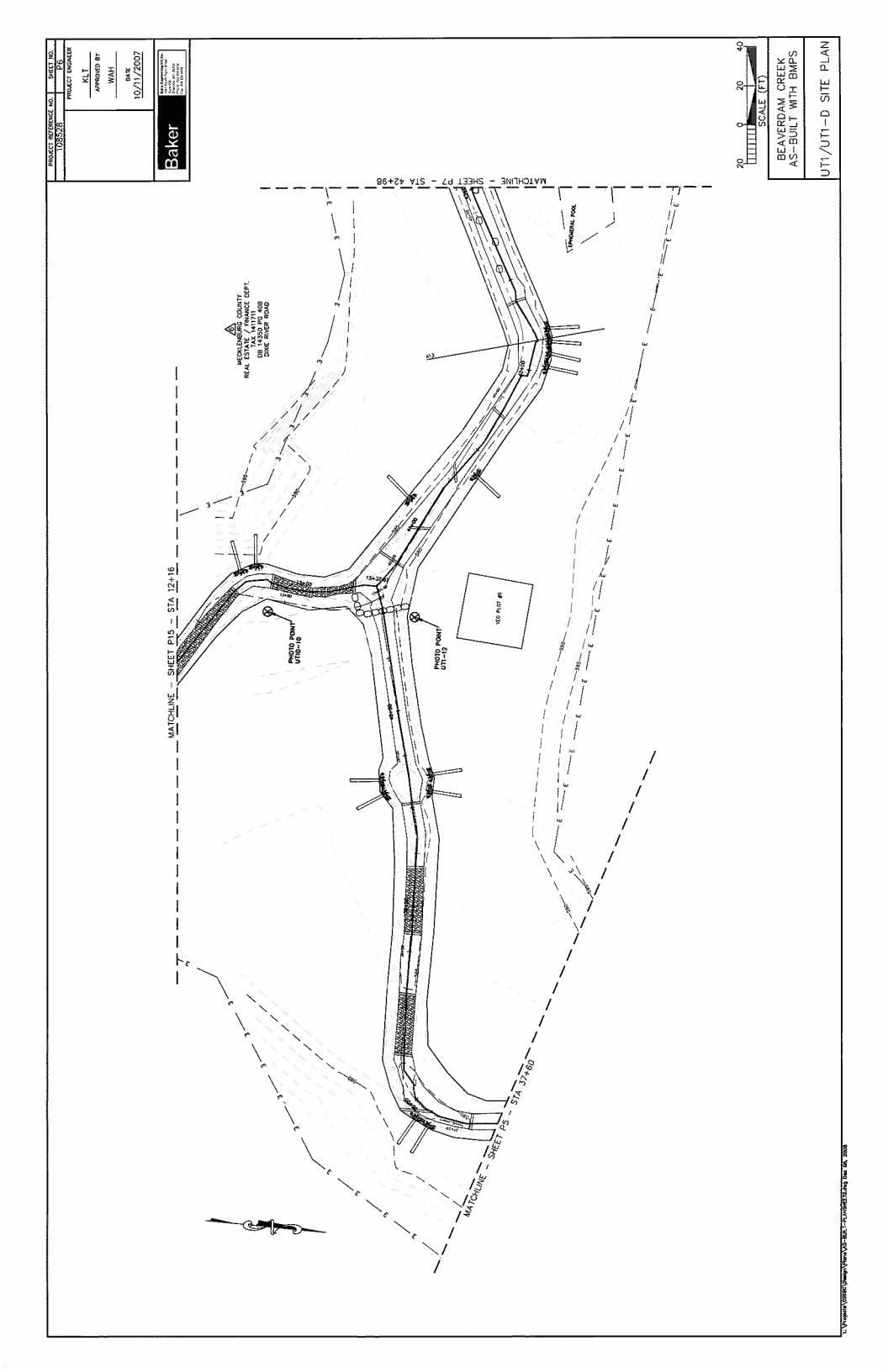


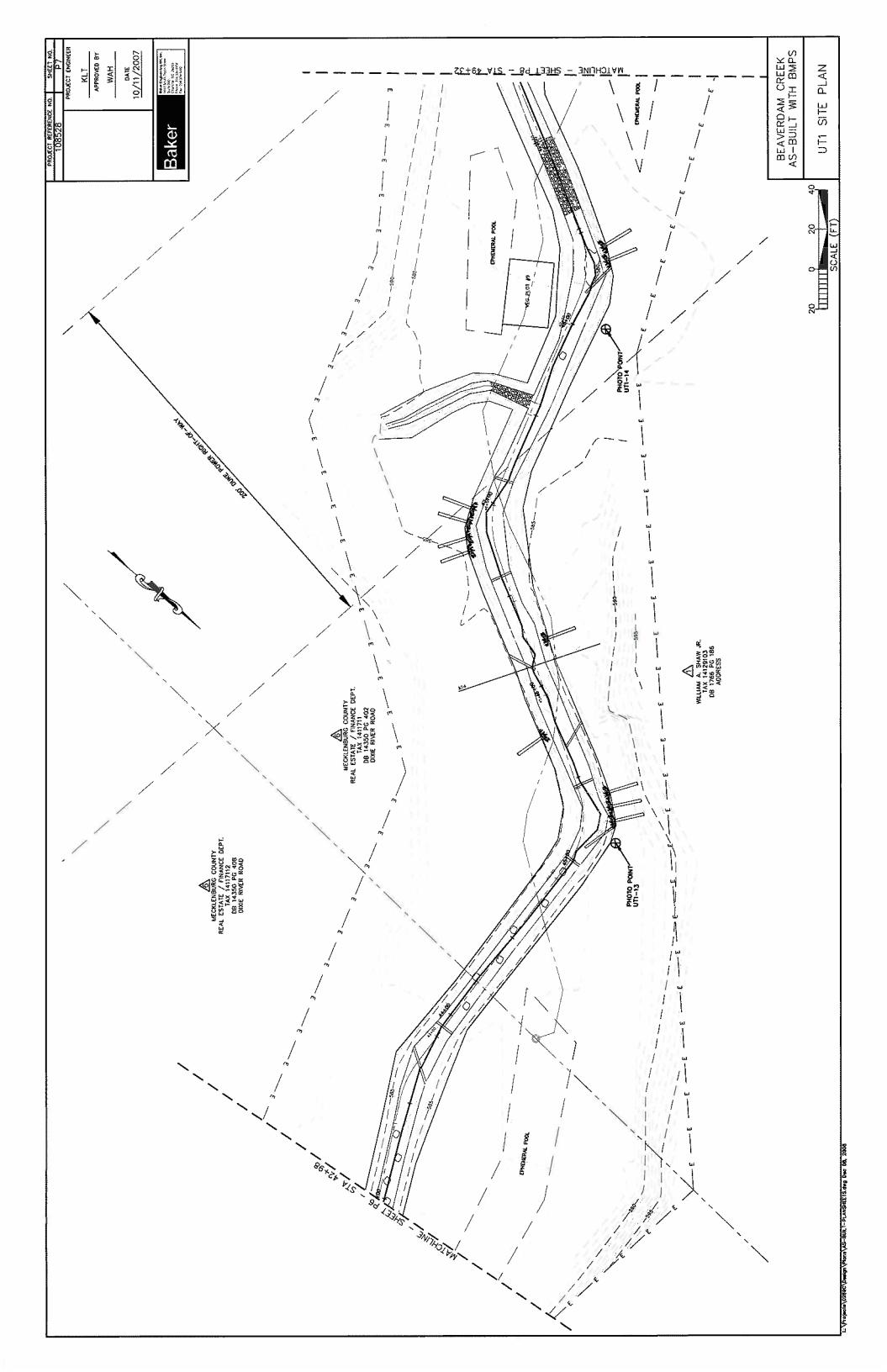

L: \Prejects\0269C\Design\Phone \45-BUL.T-PLANHETS.eng Dec 08, 200

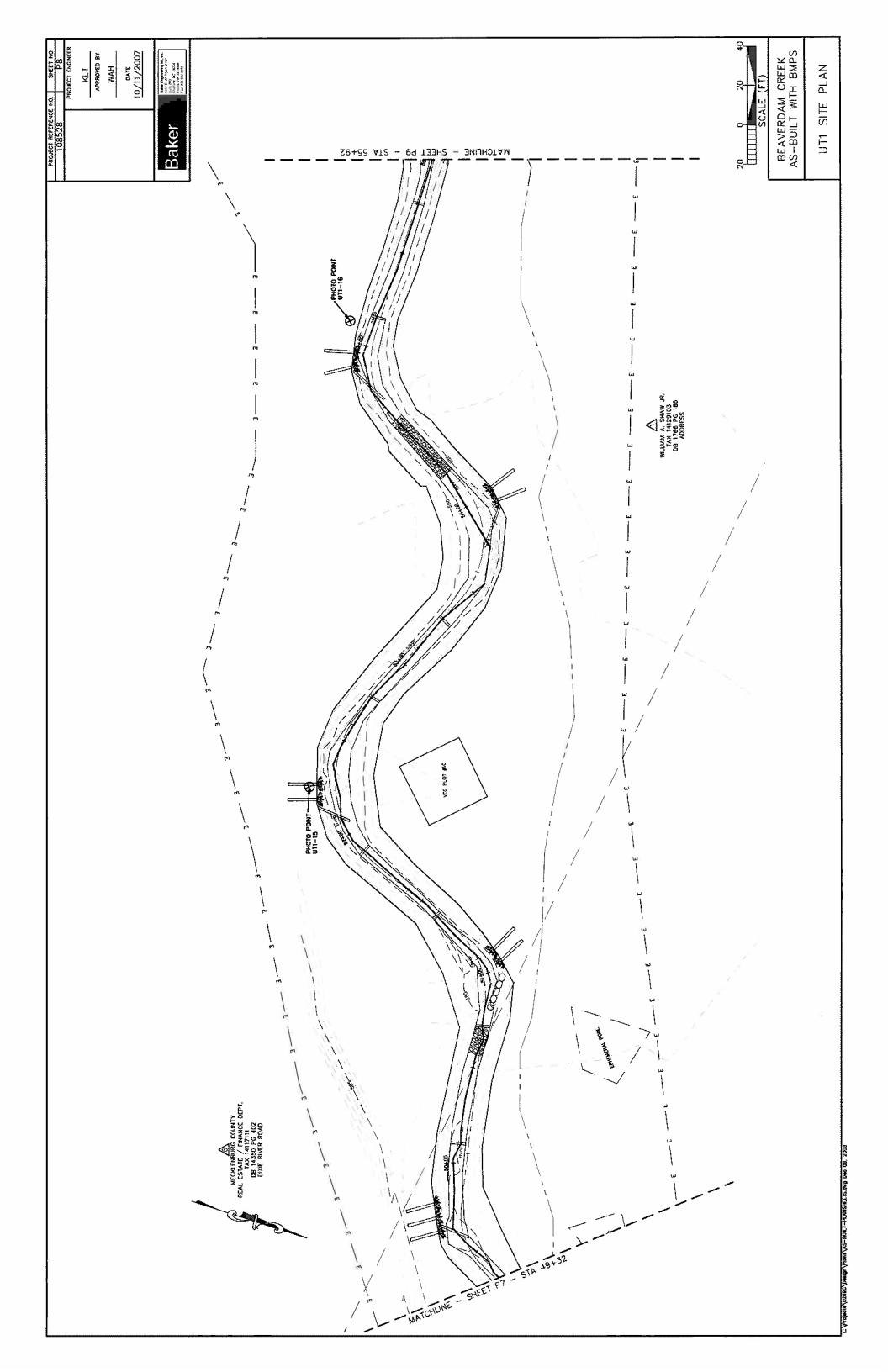


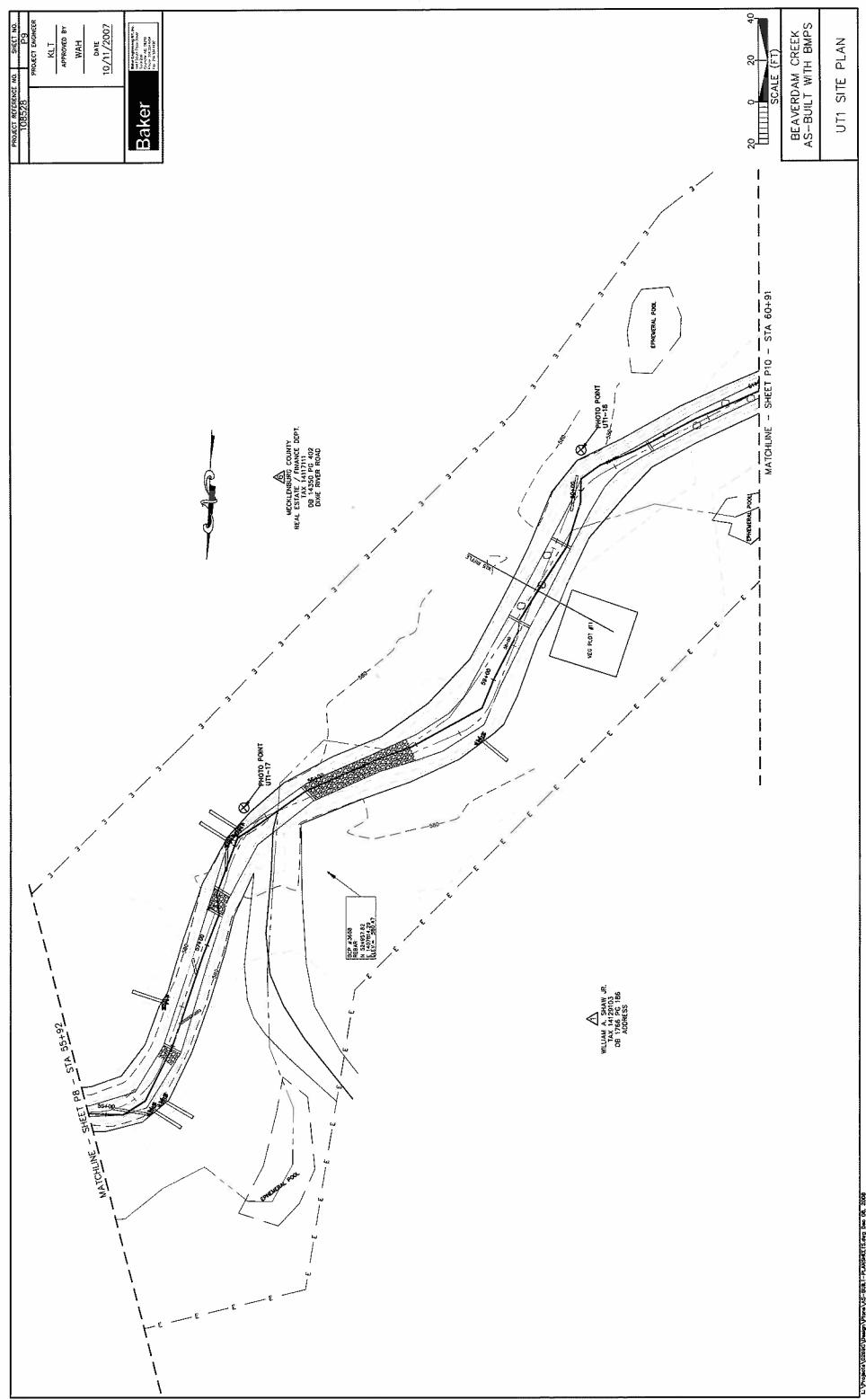


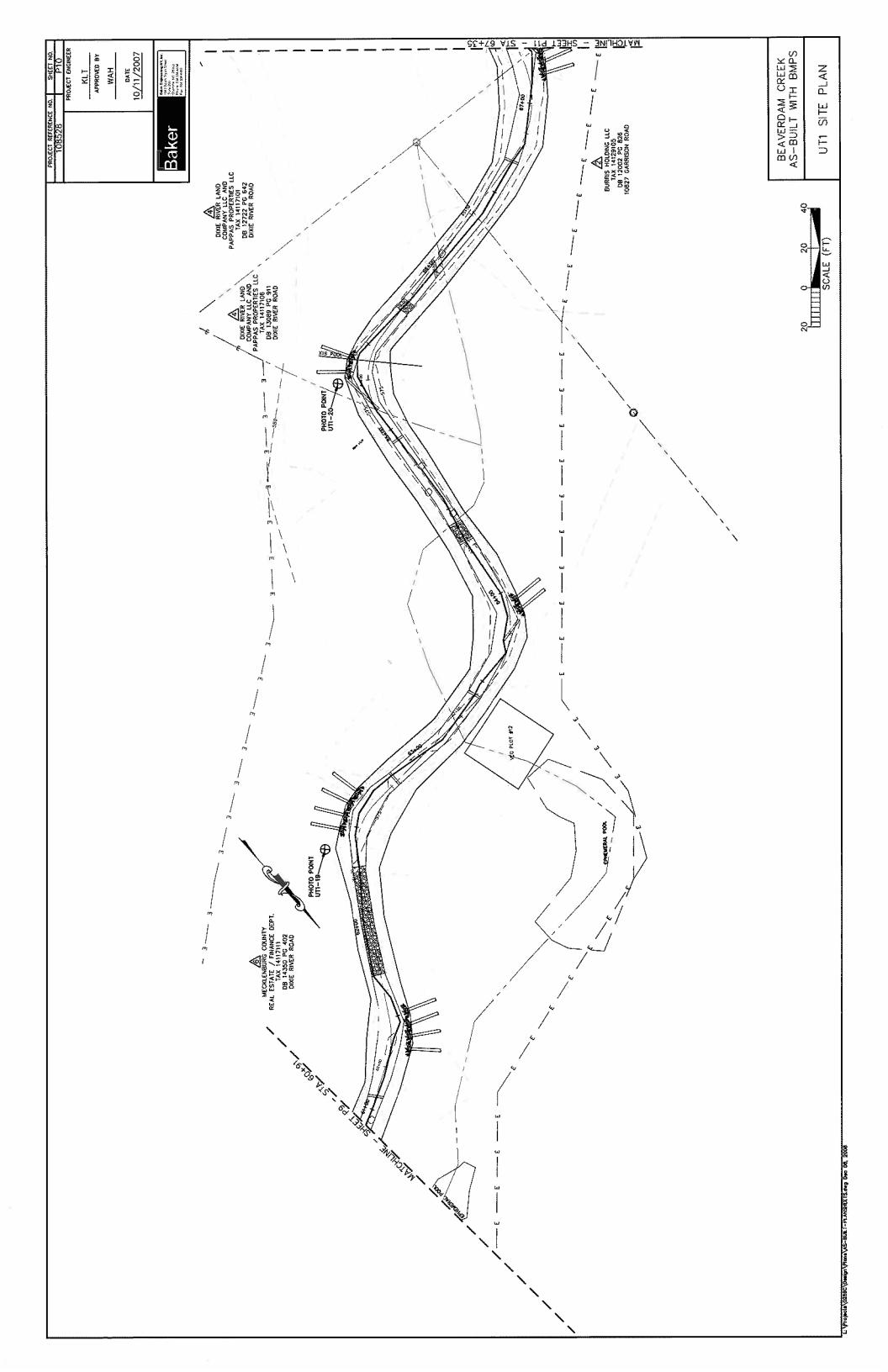


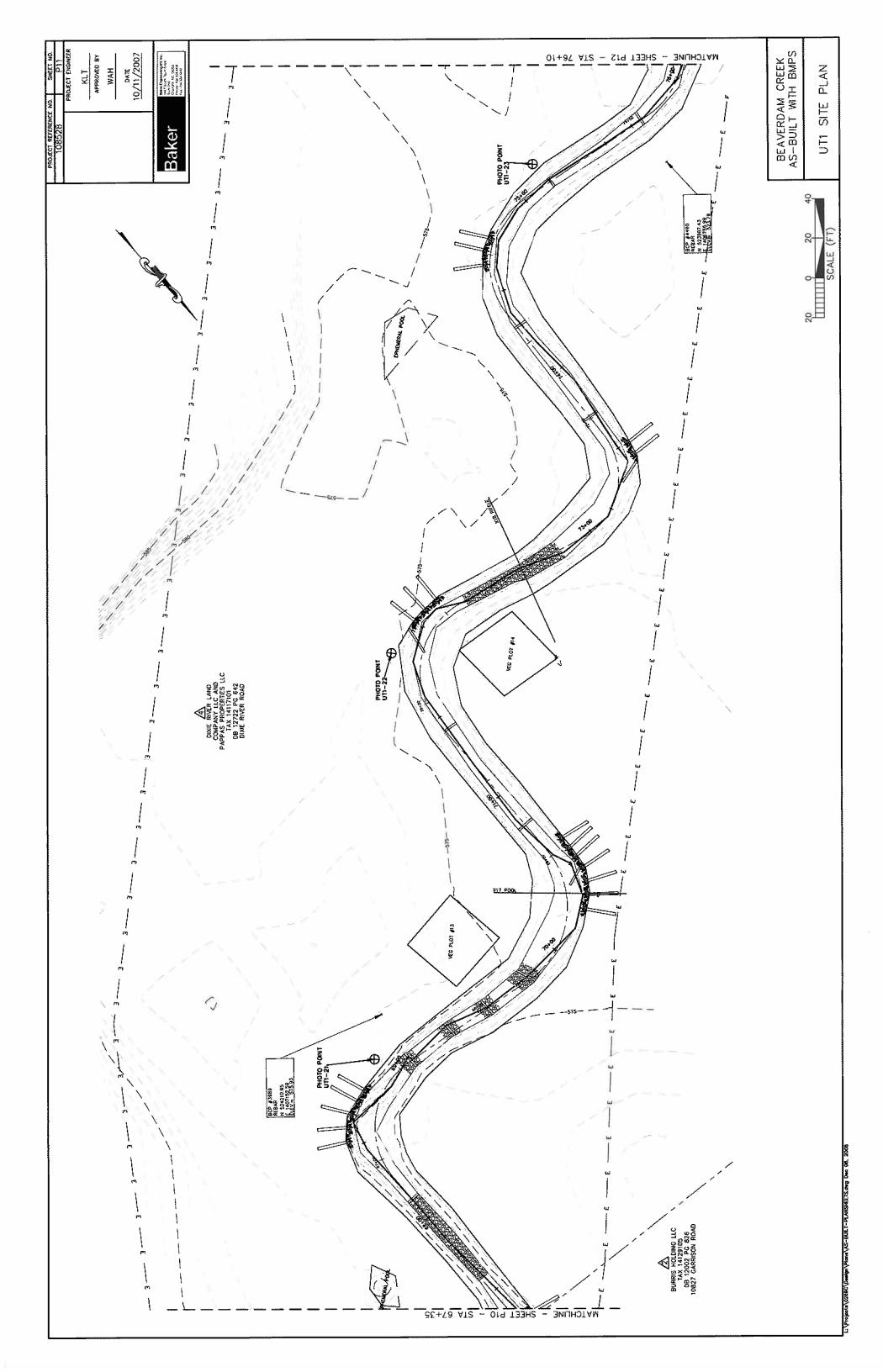


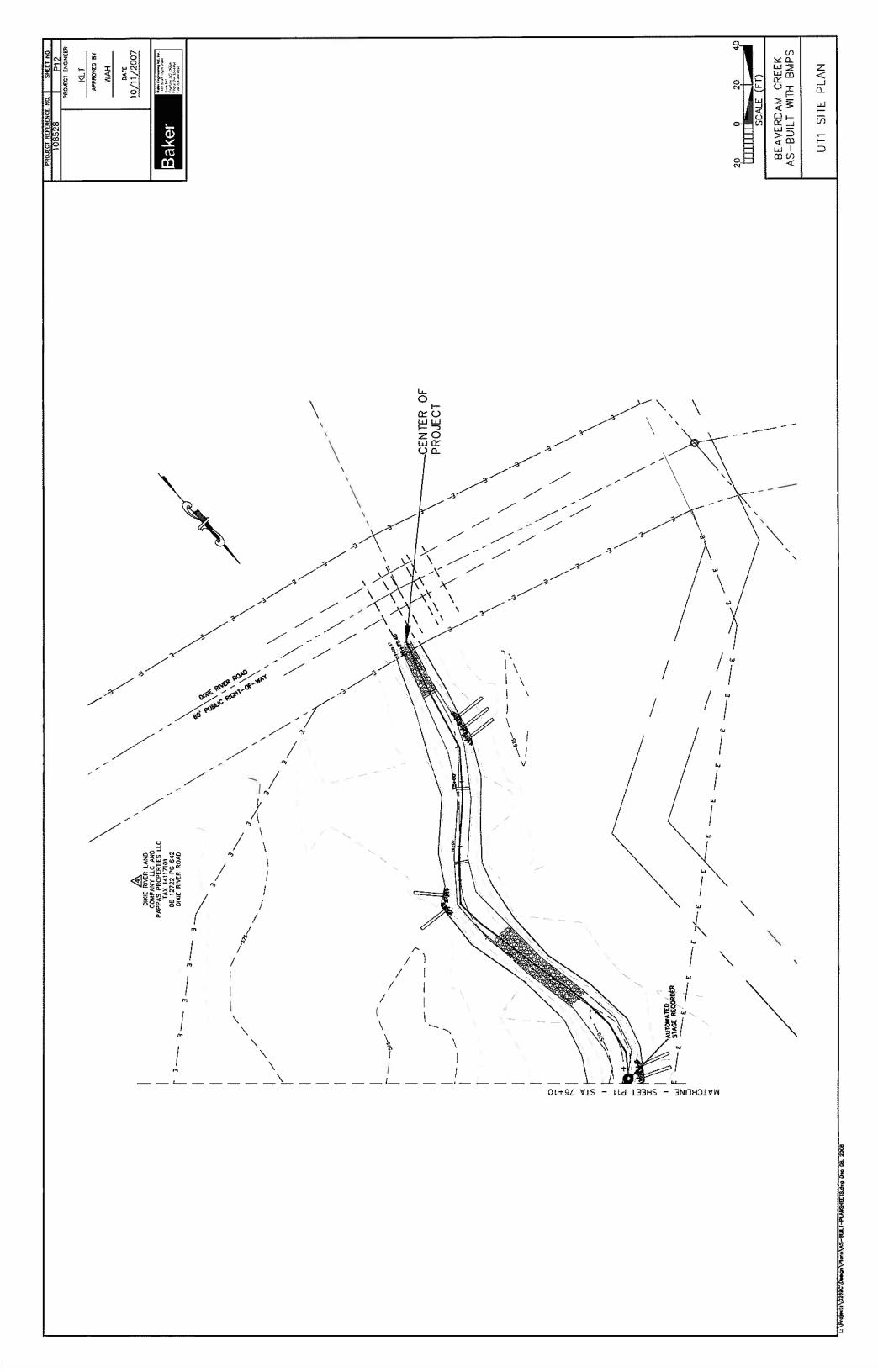


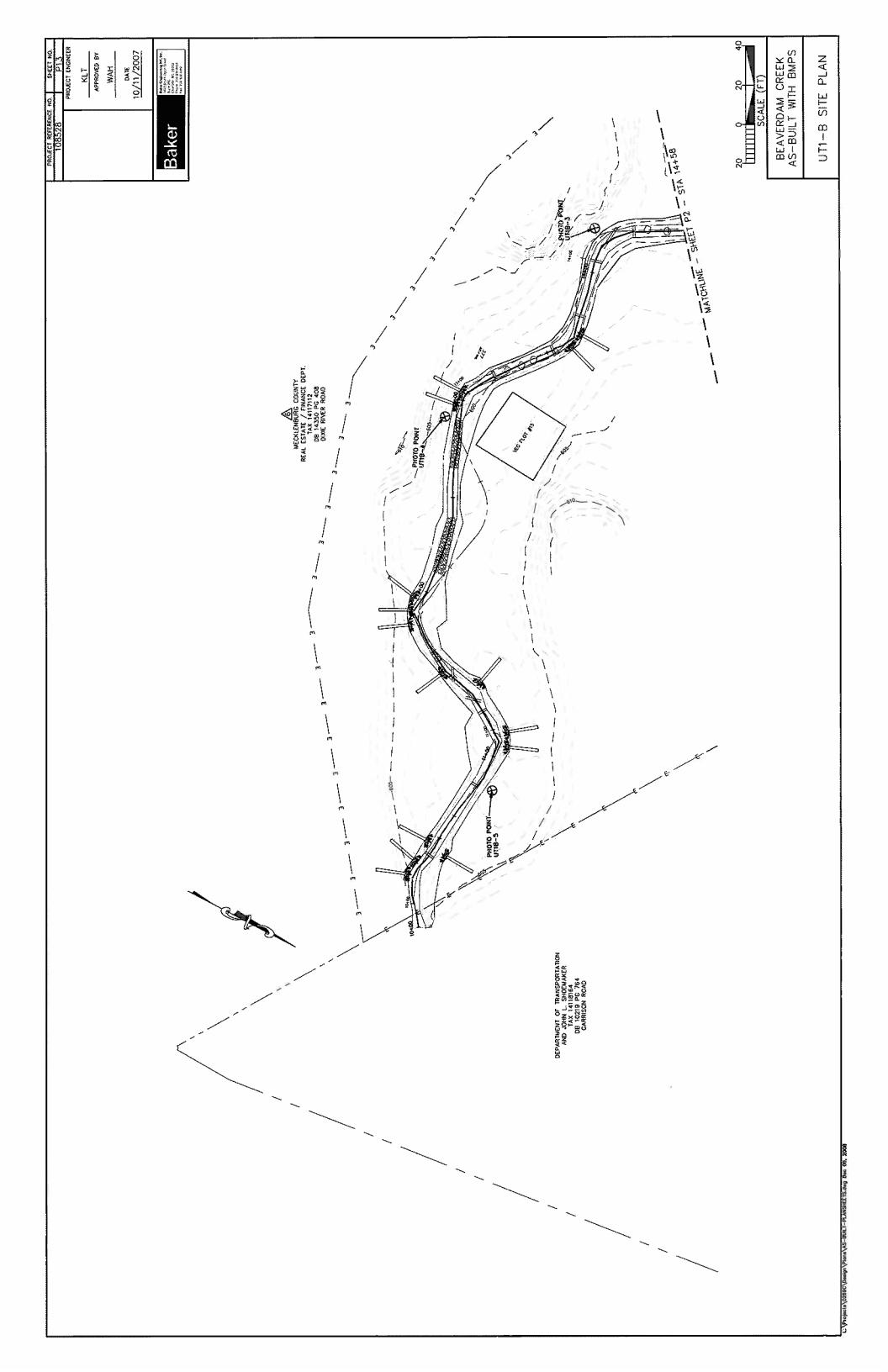


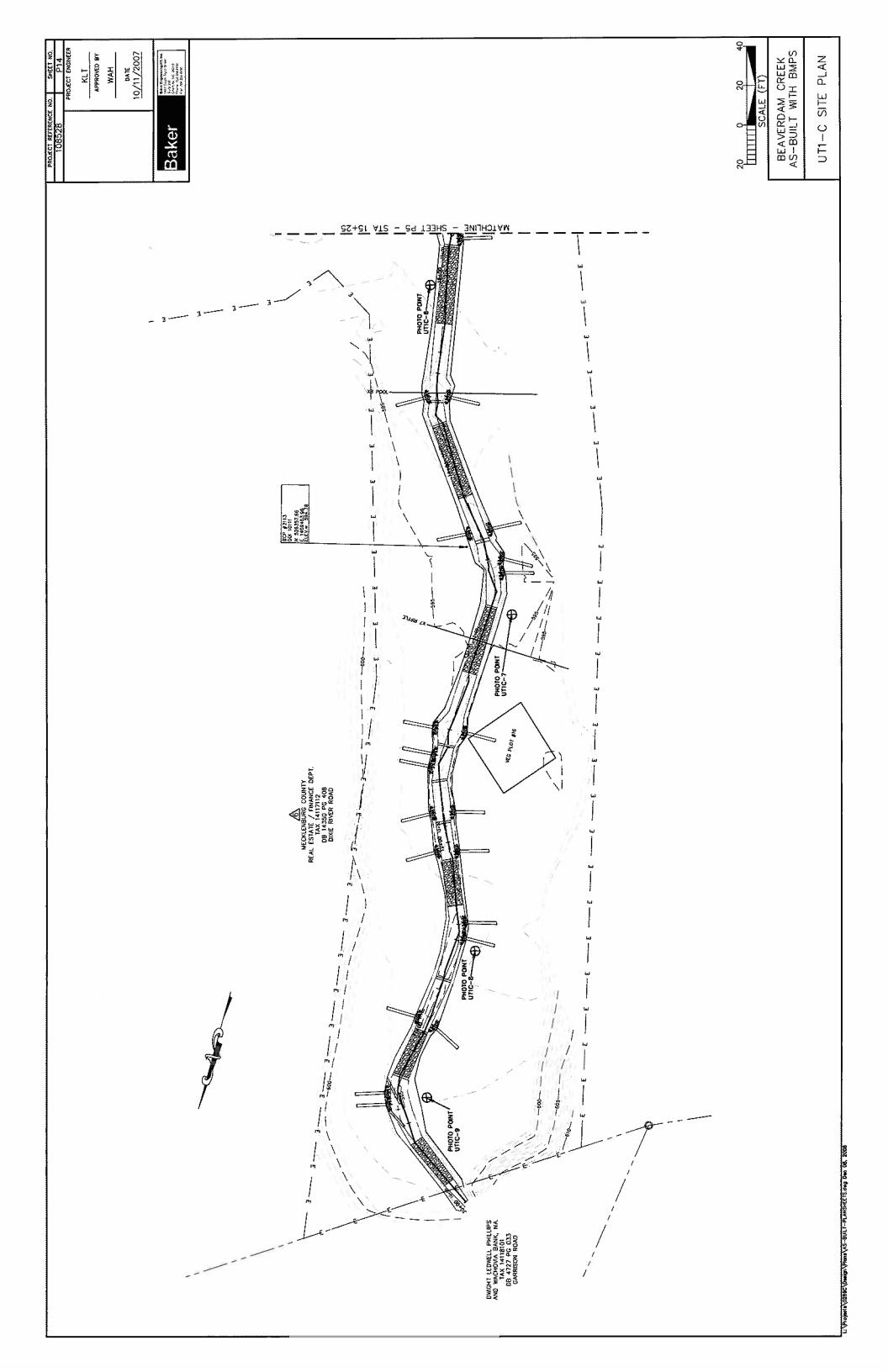


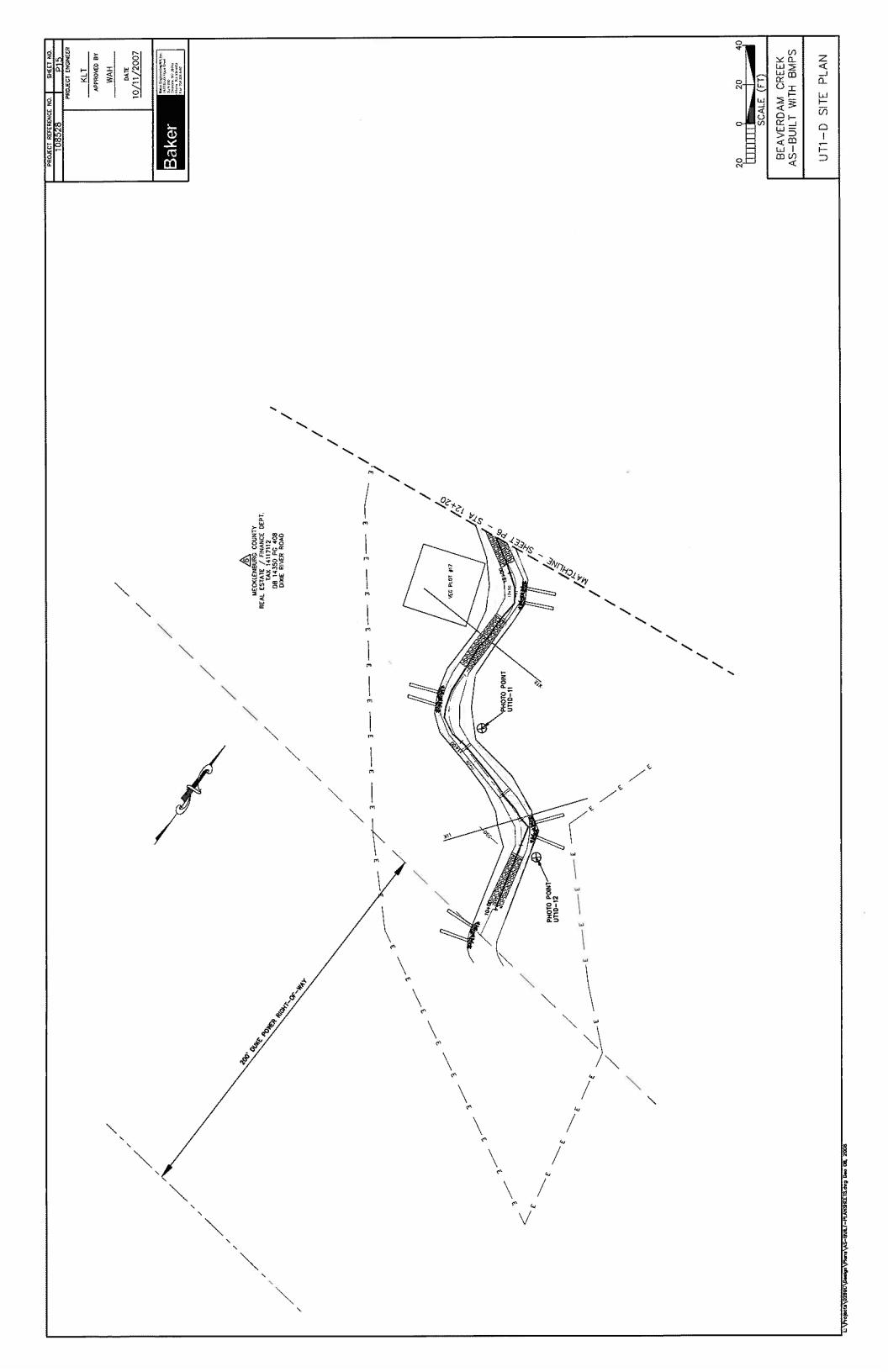


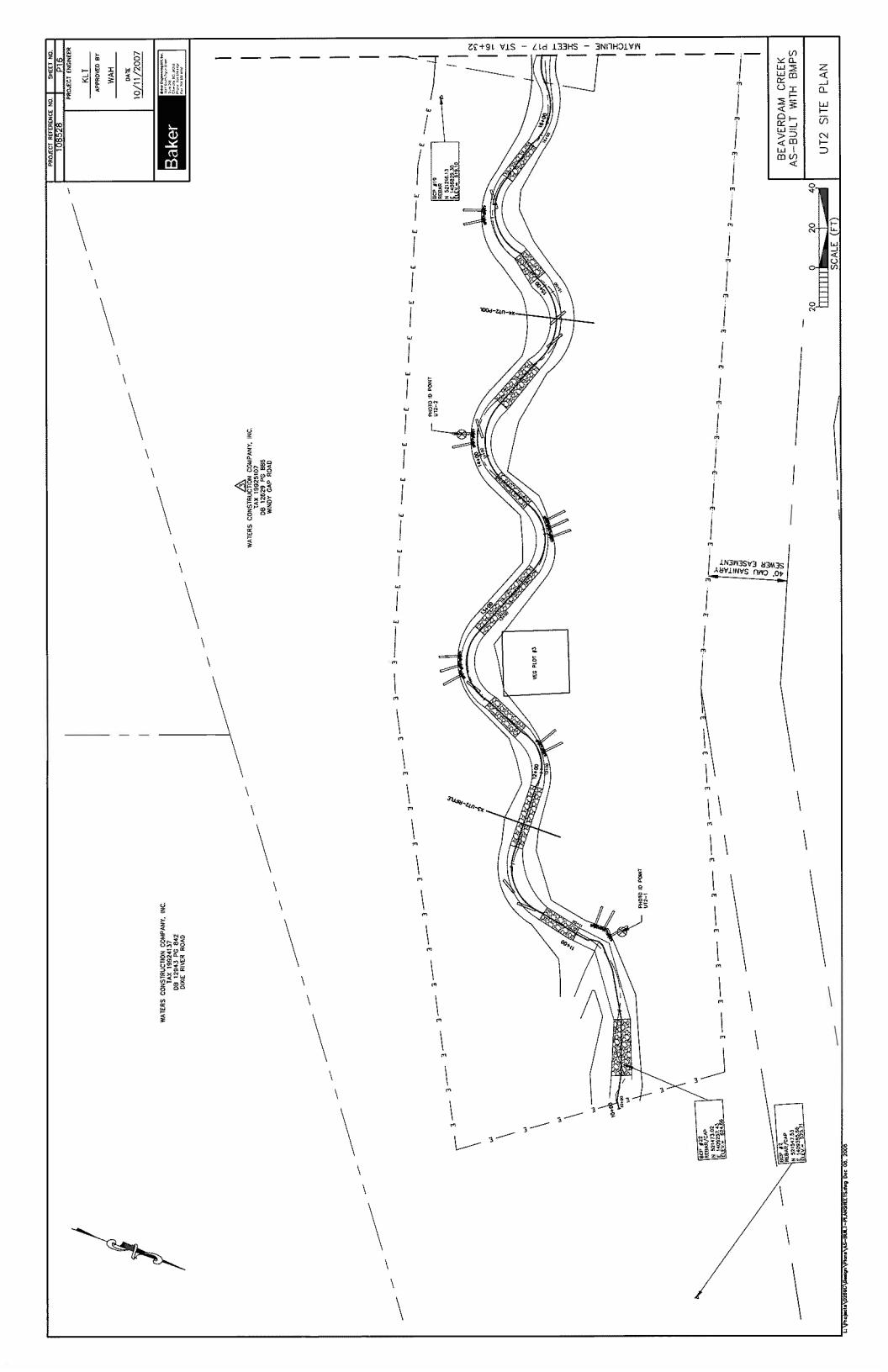


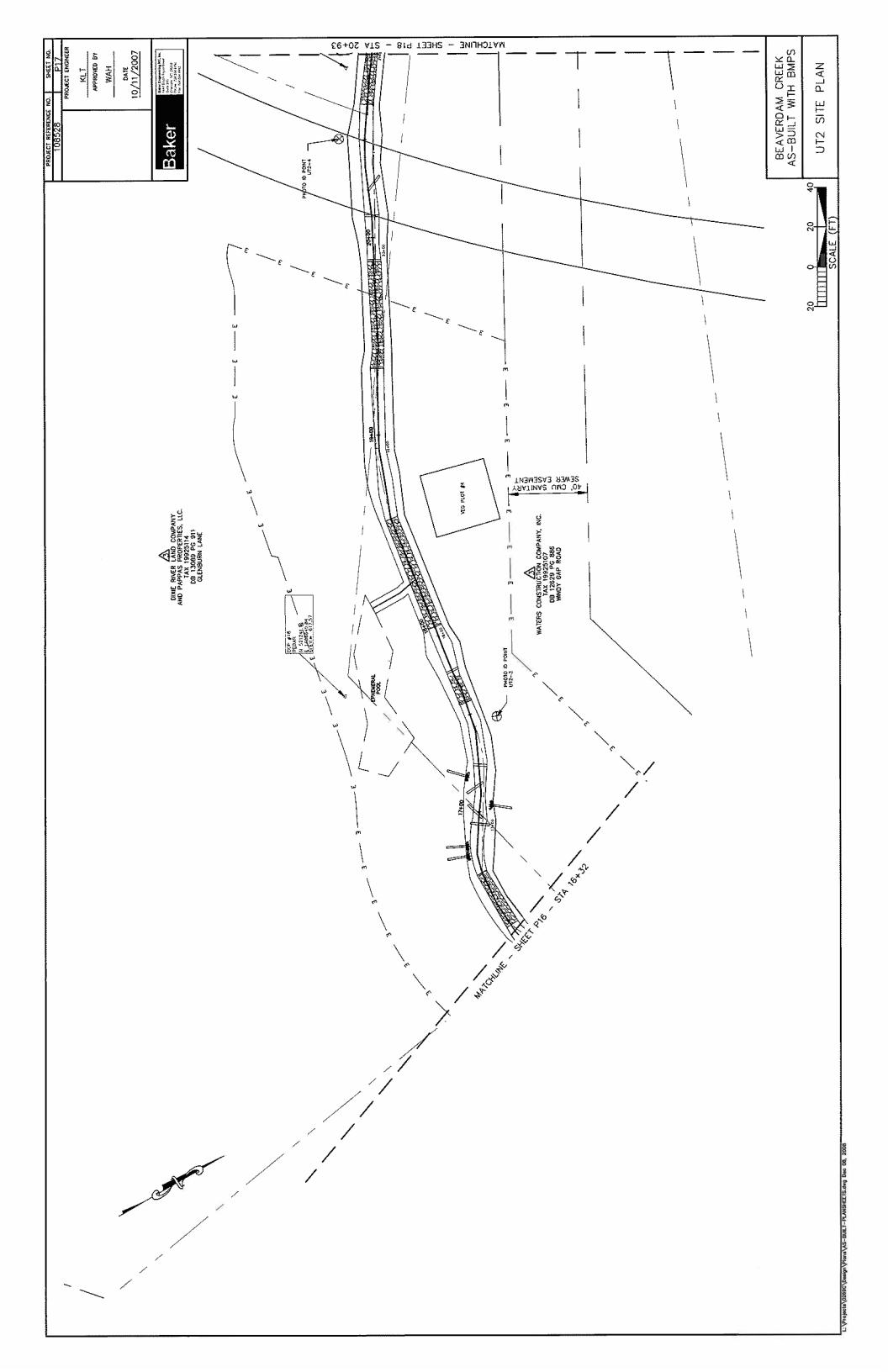


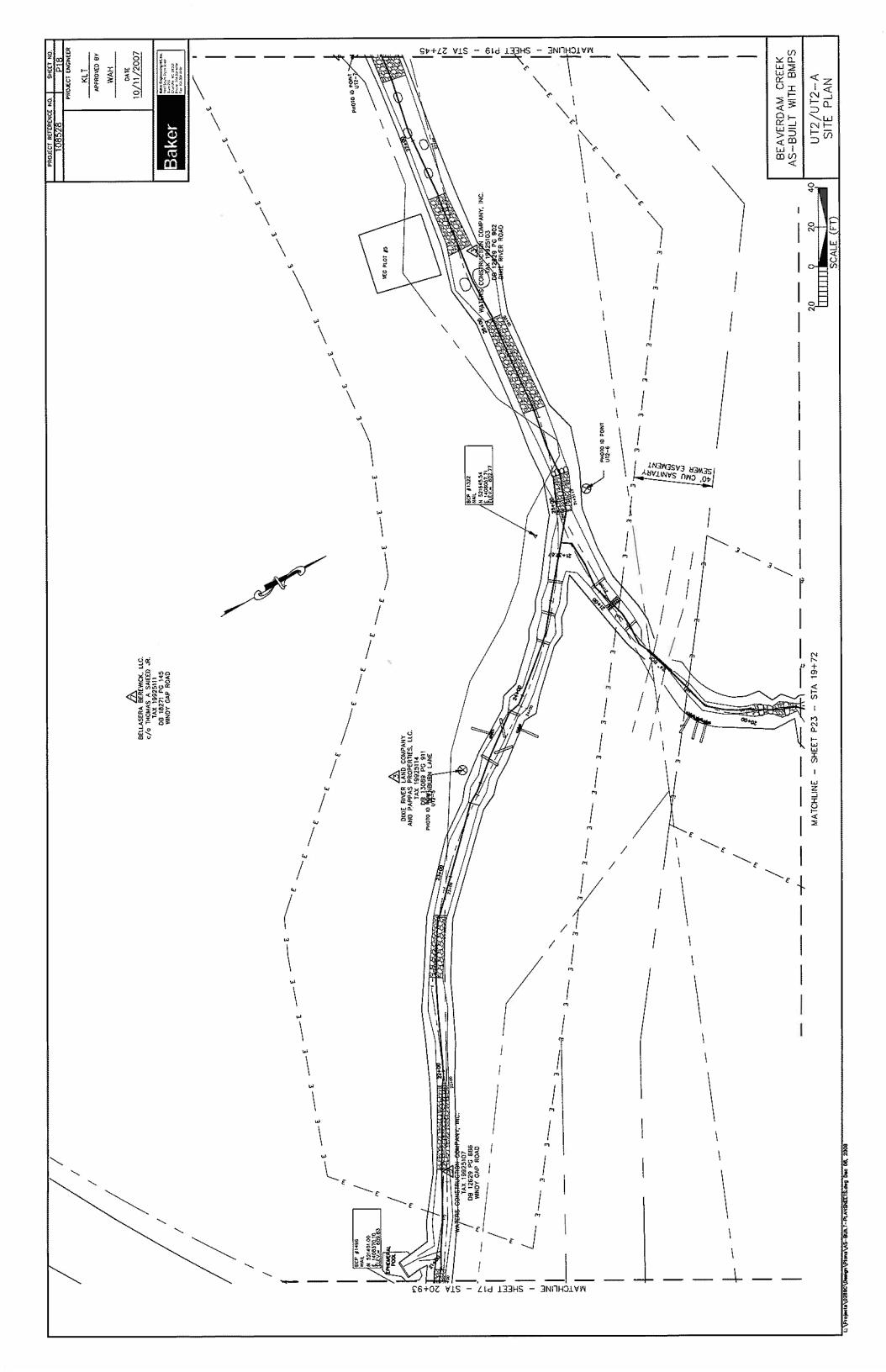


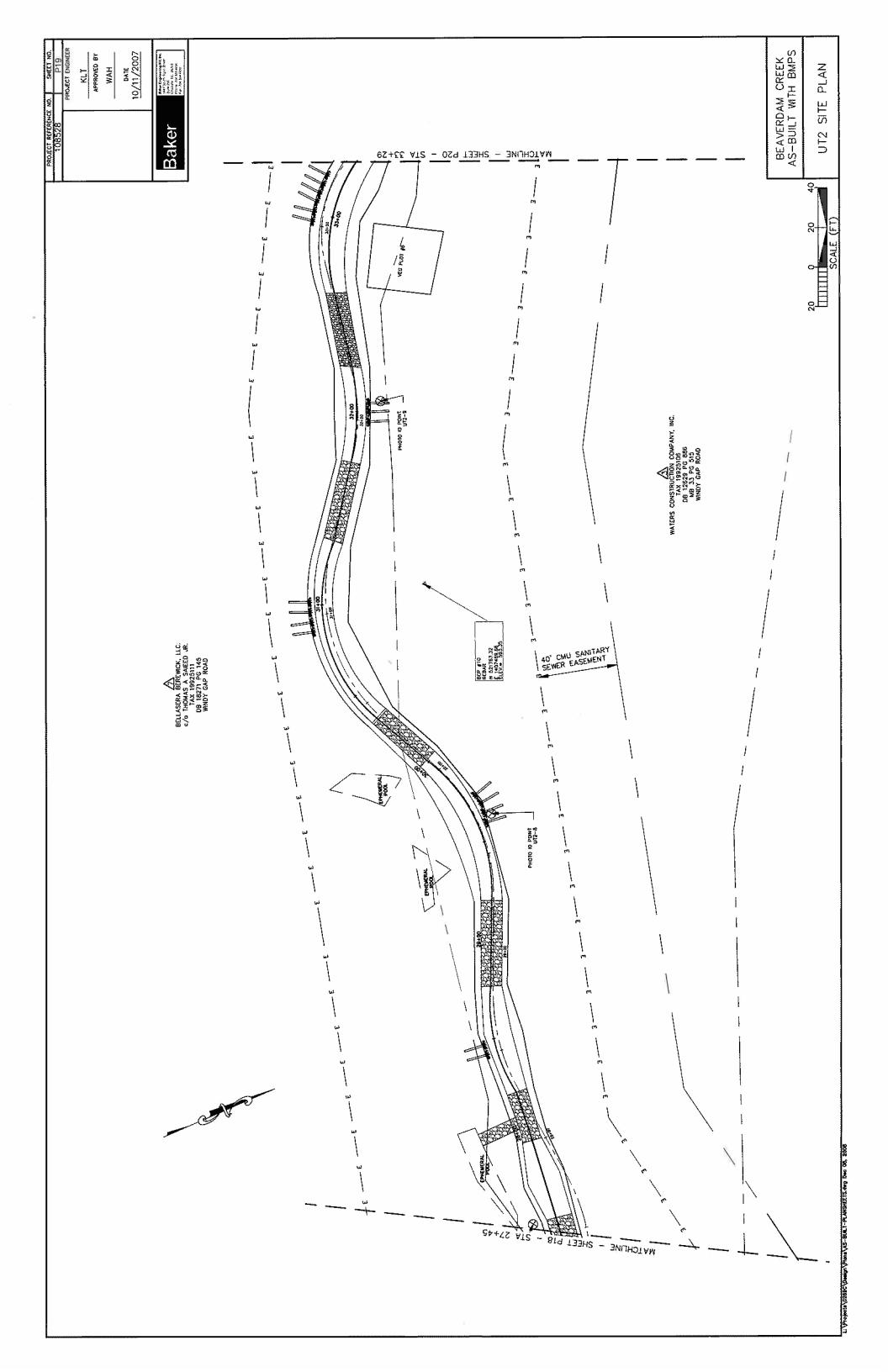


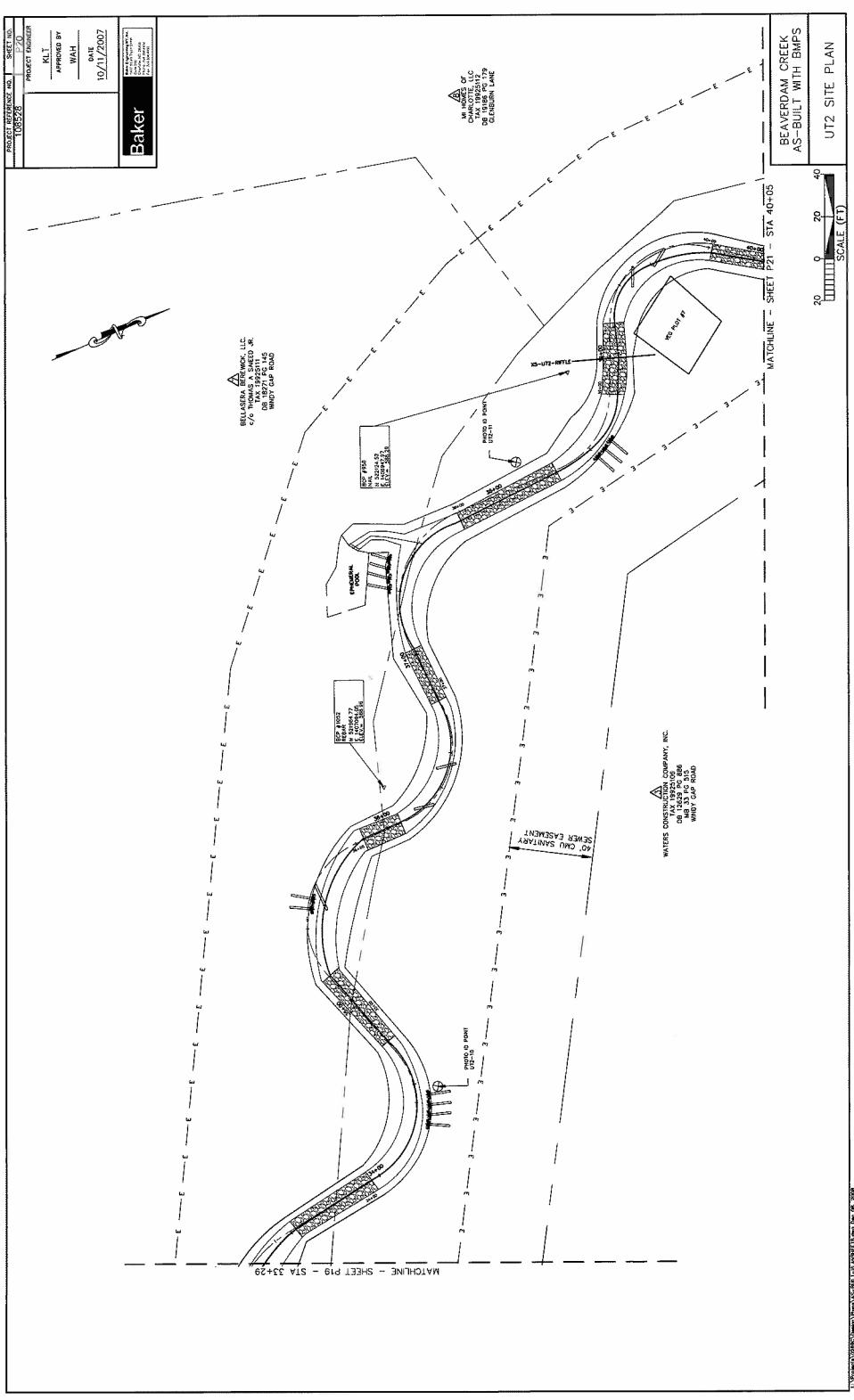


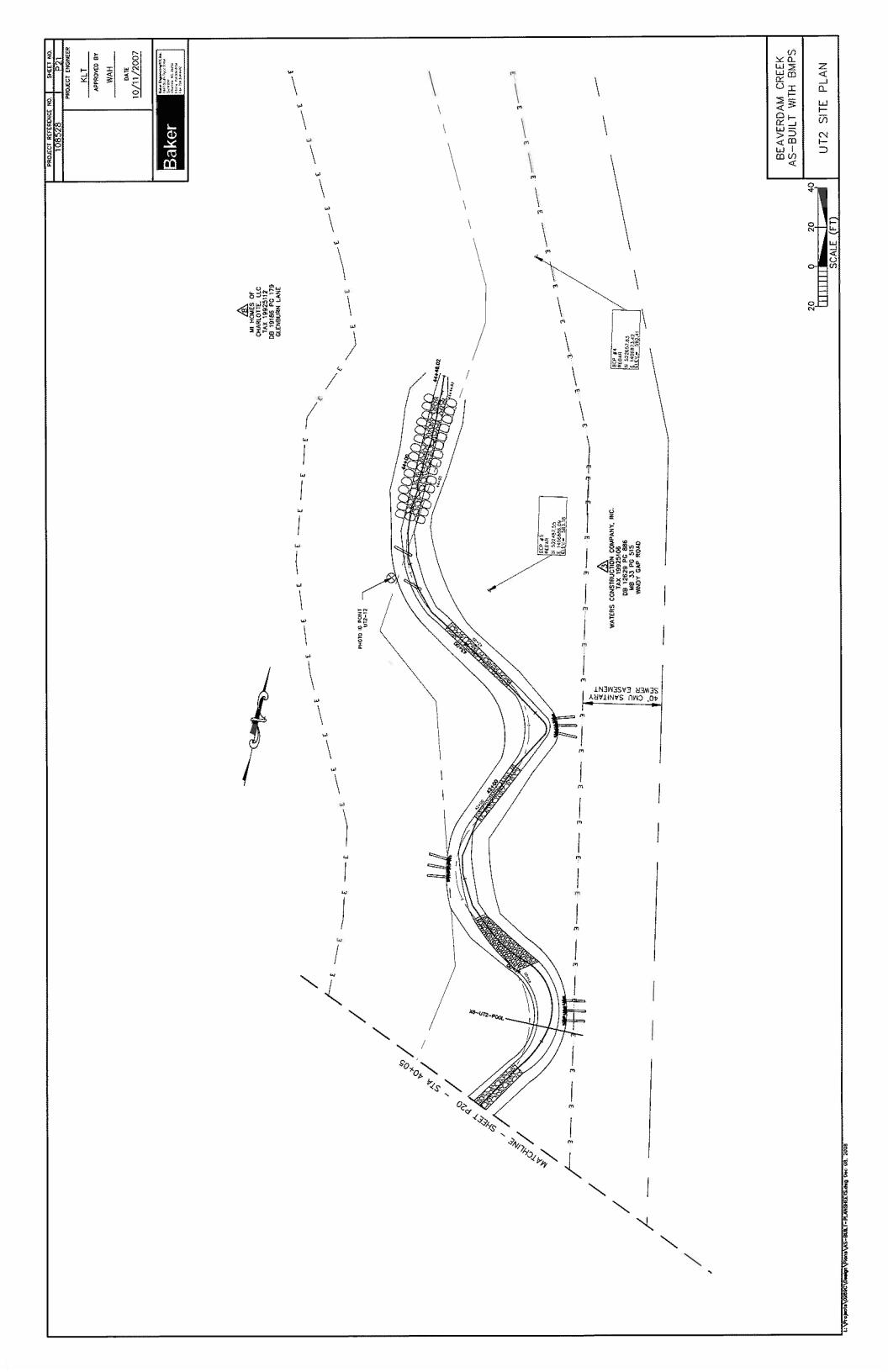


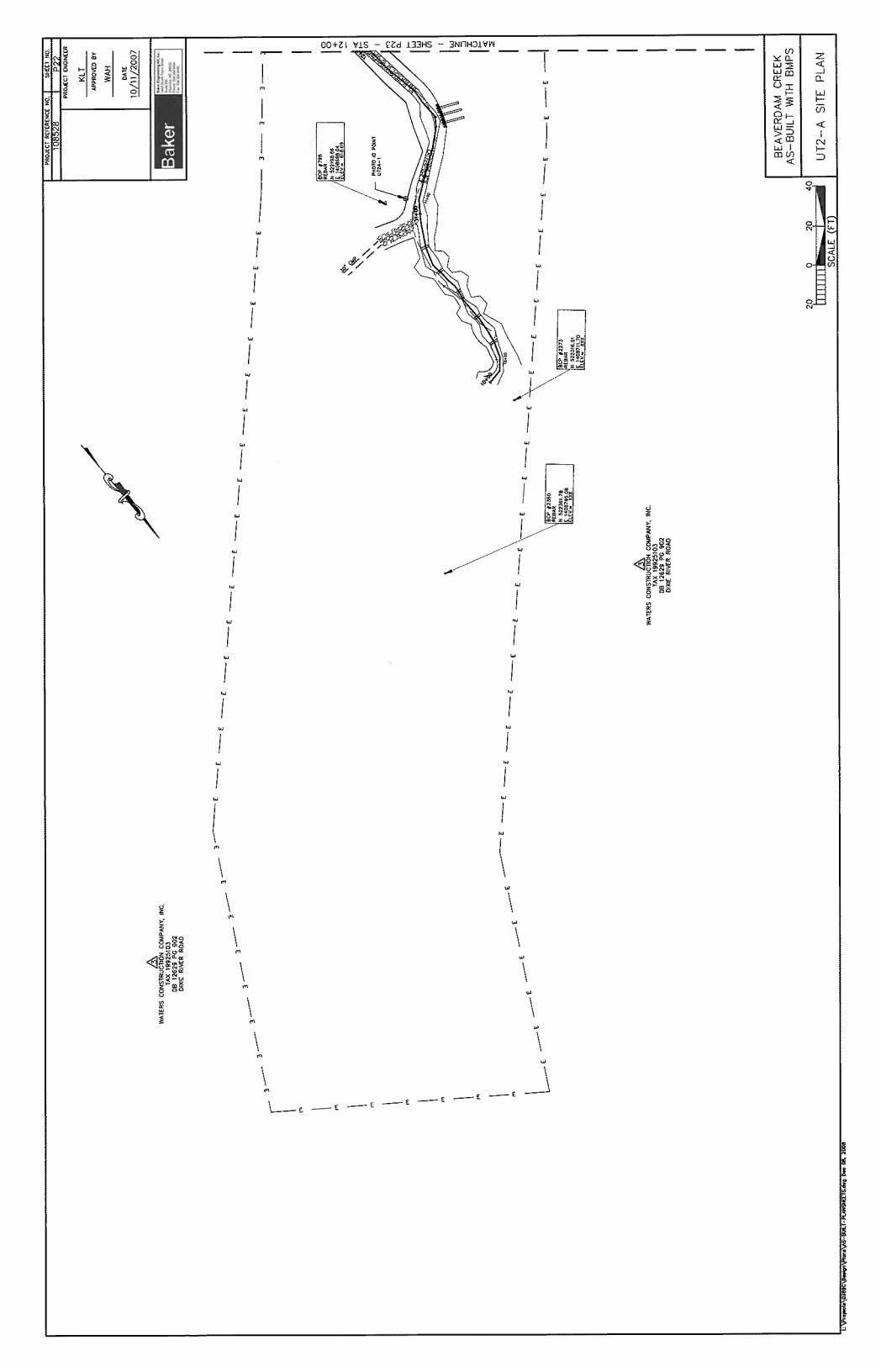


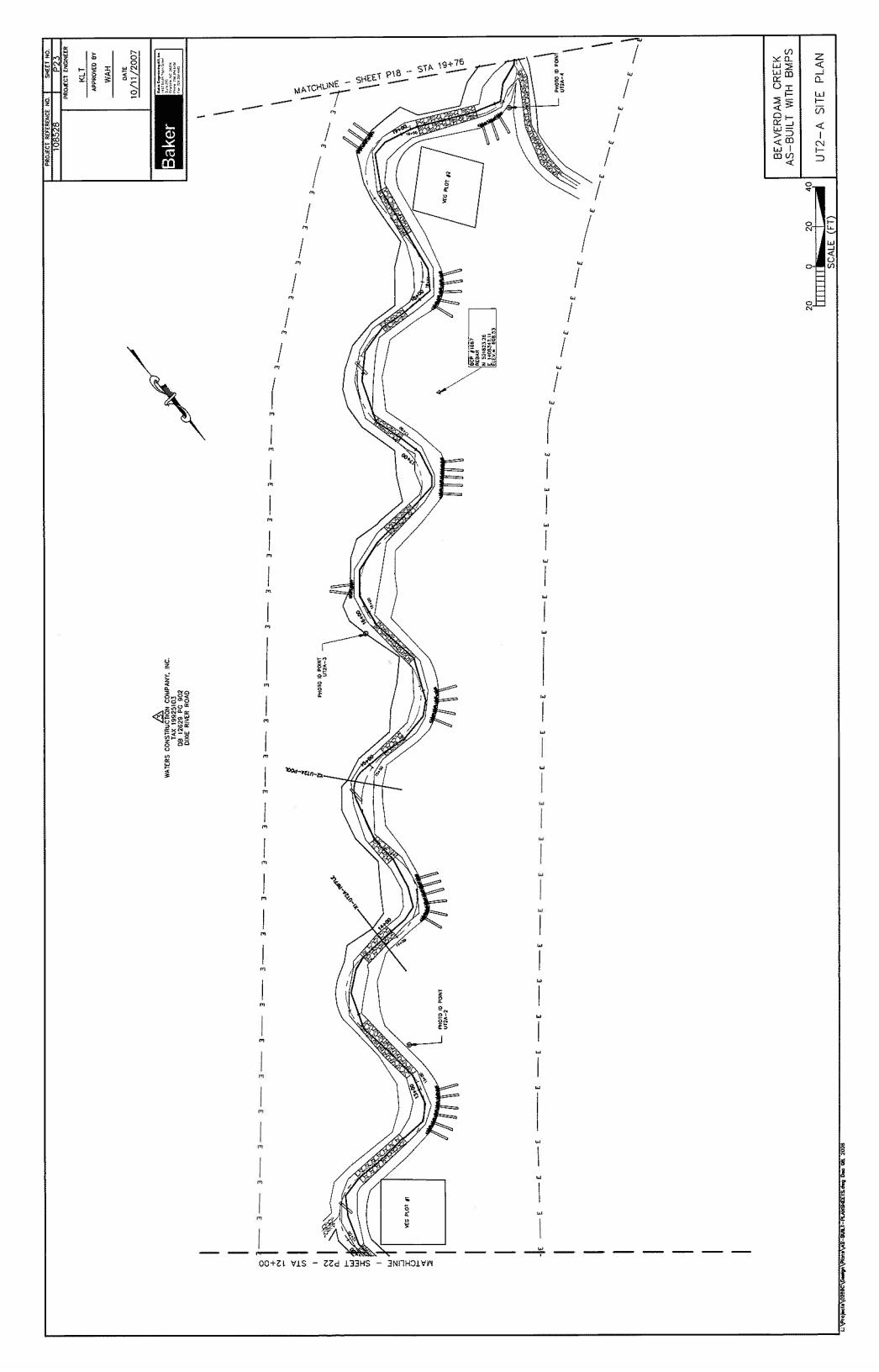












APPENDIX D

BASELINE STREAM SUMMARY FOR RESTORATION REACHES

		Beav	erdam Cre	ek Restora	tion Site - U	JT1 (Reacl	n 1)					
Parameter		Design			As-built			MY-1 (2007))	Ν	IY-2 (2008))
Dimension - Riffle	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)		14.6			12.5			13.1			12.8	
Floodprone Width (ft)		45.0			74.6			74.6			74.7	
Bankfull Mean Depth (ft)		1.5			1.4			1.4			1.4	
Bankfull Max Depth (ft)		2.1			2.0			2.1			2.0	
Bankfull Cross Sectional Area (ft2)		21.0			18.0			18.8			17.8	
Width/Depth Ratio		10.0			8.7			9.2			9.1	
Entrenchment Ratio		3.1			6.0			5.7			5.9	
Bank Height Ratio		1.0			1.0			1.0			1.0	
Bankfull Velocity (fps)		3.5										
Pattern												
Channel Beltwidth (ft)		0										
Radius of Curvature (ft)	0		15									
Meander Wavelength (ft)	0		29									
Meander Width Ratio		0										
Profile												
Riffle Length (ft)												
Riffle Slope (ft/ft)	0.0067		0.009									0.009
Pool Length (ft)												
Pool Spacing (ft)		43.8								23	54	91
Substrate and Transport Parameters												
d16 / d35 / d50 / d84 / d95							25 /	36 / 42 / 75 /	105	0.12/4	0 / 50 / 11	0 / 160
Reach Shear Stress (competency) lb/f2												
Stream Power (transport capacity) W/m2												
Additional Reach Parameters												
Channel length (ft)			555			567			568			563
Drainage Area (SM)			0.7			0.7			0.7			0.7
Rosgen Classification		Bc						С			С	
Bankfull Discharge (cfs)		75										
Sinuosity		1.02						1.05			1.04	
BF slope (ft/ft)												
Beaverdam Creek EEP Contract No D05016-1 River												

			Beaverda	m Creek R	estoration	Site - UT	1 (Reach 2-5	5)				
Parameter		Design			As-built			MY-1 (2007	7)		MY-2 (20	08)
Dimension - Riffle	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)	16.8		20.0	15.4		23.0	15.2		26.9	15.3		26.0
Floodprone Width (ft)		100.0		74.9		80.7	74.9		80.7	74.8		80.6
Bankfull Mean Depth (ft)	1.7		2.0	1.7		2.1	1.5		2.2	1.5		2.4
Bankfull Max Depth (ft)	2.4		2.9	2.5		4.1	2.3		4.1	2.4		4.7
Bankfull Cross Sectional Area (ft2)	28.0		40.0	25.6		26.8	23.8		59.7	23.6		62.4
Width/Depth Ratio	9.8		10.1	9.2		13.9	9.6		14.6	9.9		15.7
Entrenchment Ratio	5.0		6.0	3.4		4.9	2.9		4.9	3.0		4.9
Bank Height Ratio		1.0			1.0			1.0			1.0	
Bankfull Velocity (fps)	3.1		3.8									
Pattern												
Channel Beltwidth (ft)	84		100									
Radius of Curvature (ft)	34		60									
Meander Wavelength (ft)	134		200									
Meander Width Ratio	2		10									
Profile												
Riffle Length (ft)												
Riffle Slope (ft/ft)	0.0048		0.012							0.008	0.011	0.018
Pool Length (ft)												
Pool Spacing (ft)	101		120							72	108	144
Substrate and Transport Parameters												
d16 / d35 / d50 / d84 / d95							0.17-25 / 0.75	5-37 / 30-45 / 7	70-85 / 110-120	0.1-32 / 0.2	6-46 / 0.37 - 64 /	1.0 - 145 / 5.6-178
Reach Shear Stress (competency) lb/f2												
Stream Power (transport capacity) W/m2												
Additional Reach Parameters												
Channel length (ft)			6155			5897			3021			3023
Drainage Area (SM)	0.7		1.75	0.7		1.75	0.7		1.75	0.7		1.75
Rosgen Classification		C/E						С			С	
Bankfull Discharge (cfs)	105		155									
Sinuosity	1.1		1.2					1.3			1.3	
BF slope (ft/ft)	0.002		0.006									

			Beaverdar	n Creek I	Restoration	n Site - U	T1B					
Parameter		Design			As-built		Ν	MY-1 (2007)		MY-2 (200	8)
Dimension - Riffle	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)		10.4			11.1			11.8			11.1	
Floodprone Width (ft)		100.0			75.0			75.0			75.0	
Bankfull Mean Depth (ft)		1.1			1.4			1.4			1.4	
Bankfull Max Depth (ft)		1.4			2.3			2.3			2.4	
Bankfull Cross Sectional Area (ft2)		11.0			15.3			16.5			15.6	
Width/Depth Ratio		9.7			8.0			8.5			7.9	
Entrenchment Ratio		9.6			6.8			6.3			6.8	
Bank Height Ratio		1.0			1.0			1.0			1.0	
Bankfull Velocity (fps)		4.0										
Pattern												
Channel Beltwidth (ft)		52										
Radius of Curvature (ft)	21		31									
Meander Wavelength (ft)	83		104									
Meander Width Ratio		5										
Profile												
Riffle Length (ft)												
Riffle Slope (ft/ft)	0.0104		0.0138									
Pool Length (ft)												
Pool Spacing (ft)		52										
Substrate and Transport Parameters												
d16 / d35 / d50 / d84 / d95							<0.063 / <0	.063 / <0.06	3 / 0.2 / 0.4	0.0	65 / 0.09 / 1.1 /	0.3/0.4
Reach Shear Stress (competency) lb/f2												
Stream Power (transport capacity) W/m2												
Additional Reach Parameters												
Channel length (ft)			790			778			775			
Drainage Area (SM)			0.34			0.34			0.34			0.34
Rosgen Classification		C/E			С			С			С	
Bankfull Discharge (cfs)		45										
Sinuosity		1.15			1.1			1.1				
BF slope (ft/ft)		0.003			0.013							

			Beaverdar	n Creek Re	estoration S	ite - UT1C						
Parameter		Design			As-built]	MY-1 (2007))		MY-2 (2008))
Dimension - Riffle	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)		11.2			11.0			12.0			13.2	
Floodprone Width (ft)		100.0			70.2			70.6			71.2	
Bankfull Mean Depth (ft)		0.8			0.7			0.7			0.7	
Bankfull Max Depth (ft)		0.9			1.0			1.1			1.1	
Bankfull Cross Sectional Area (ft2)		8.0			7.8			8.8			9.5	
Width/Depth Ratio		14.8			15.6			16.5			18.4	
Entrenchment Ratio		8.9			6.4			5.9			5.4	
Bank Height Ratio		1.0			1.0			1.0			1.0	
Bankfull Velocity (fps)		3.2										
Pattern												
Channel Beltwidth (ft)												
Radius of Curvature (ft)												
Meander Wavelength (ft)												
Meander Width Ratio												
Profile												
Riffle Length (ft)												
Riffle Slope (ft/ft)	0.0191		0.0265									
Pool Length (ft)												
Pool Spacing (ft)		44.8										
Substrate and Transport Parameters												
d16 / d35 / d50 / d84 / d95							26 /	37 / 42 / 75 /	100	36 / 3	50 / 64 / 110	/ 130
Reach Shear Stress (competency) lb/f2												
Stream Power (transport capacity) W/m2												
Additional Reach Parameters												
Channel length (ft)			628			616			615			
Drainage Area (SM)			0.15			0.15			0.15			0.15
Rosgen Classification		В			С			С			С	
Bankfull Discharge (cfs)		27										
Sinuosity		1.05			1.1			1.1				
BF slope (ft/ft)		0.017			0.013							

			Beaverda	n Creek R	estoration S	ite - UT1D)					
Parameter		Design			As-built		-	MY-1 (2007)	-	MY-2 (2008))
Dimension - Riffle	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)		10.4			11.4			12.7			11.4	
Floodprone Width (ft)		100.0			75.5			75.5			75.5	
Bankfull Mean Depth (ft)		0.9			0.8			0.7			0.8	
Bankfull Max Depth (ft)		1.2			1.2			1.1			1.1	
Bankfull Cross Sectional Area (ft2)		10.0			9.0			9.2			9.0	
Width/Depth Ratio		11.2			14.4			17.5			14.4	
Entrenchment Ratio		9.6			6.6			6.0			6.6	
Bank Height Ratio		1.0			1.0			1.0			1.0	
Bankfull Velocity (fps)		2.9										
Pattern												
Channel Beltwidth (ft)		52										
Radius of Curvature (ft)	21		31									
Meander Wavelength (ft)	83		104									
Meander Width Ratio	8		10									
Profile												
Riffle Length (ft)												
Riffle Slope (ft/ft)												
Pool Length (ft)												
Pool Spacing (ft)		52										
Substrate and Transport Parameters												
d16 / d35 / d50 / d84 / d95							32 /	38 / 43 / 85 /	120	25 /	33 / 38 / 60	/ 88
Reach Shear Stress (competency) lb/f2												
Stream Power (transport capacity) W/m2												
Additional Reach Parameters												
Channel length (ft)			352			338			334			
Drainage Area (SM)			0.16			0.16			0.16			0.16
Rosgen Classification		C/E			С			С			С	
Bankfull Discharge (cfs)		28										
Sinuosity		1.15			1.2			1.2				
BF slope (ft/ft)		0.007			0.014							

			Beaverdan	ı Creek R	Restoration	Site - UT2	2					
Parameter		Design			As-built]	MY-1 (2007))		MY-2 (200	8)
Dimension - Riffle	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)	10.2		15.6	16.8		16.9	16.1		16.6	16.2		17.3
Floodprone Width (ft)	30.0		80	39.9		39.9	39.9		39.9	39.9		40.0
Bankfull Mean Depth (ft)	0.92		1.5	0.7		1.4	0.7		1.4	0.7		1.3
Bankfull Max Depth (ft)	1.3		2.3	1.1		2.1	1.1		1.9	1.1		1.9
Bankfull Cross Sectional Area (ft2)	9.9		23.9	12.2		23.4	10.9		22.6	11.2		21.4
Width/Depth Ratio	10.2		12.6	12.1		23.4	12.2		23.9	12.3		26.6
Entrenchment Ratio	2.8		5.9	2.4		2.4	2.4		2.5	2.3		2.5
Bank Height Ratio		1.0			1.0		1		1.0		1.0	
Bankfull Velocity (fps)	4.7		5.4									
Pattern												
Channel Beltwidth (ft)	20		75									
Radius of Curvature (ft)	23		100									
Meander Wavelength (ft)	100		300									
Meander Width Ratio	9.6		27.8									
Profile												
Riffle Length (ft)												
Riffle Slope (ft/ft)	0.0122		0.0279									
Pool Length (ft)												
Pool Spacing (ft)	40		105									
Substrate and Transport Parameters												
d16 / d35 / d50 / d84 / d95							26-27 /	35 / 39-39 / 53	3-59 / 95	0.13-25/2	26-35 / 36-40 / 6	60-64 / 115-140
Reach Shear Stress (competency) lb/f2												
Stream Power (transport capacity) W/m2												
Additional Reach Parameters												
Channel length (ft)			3290			3293			3142			
Drainage Area (SM)	0.1		0.3	0.1		0.3	0.1		0.3	0.1		0.3
Rosgen Classification		С			С			С			С	
Bankfull Discharge (cfs)	48		120									
Sinuosity	1.03		1.21		1.3			1.3				
BF slope (ft/ft)	0.008		0.019		0.0138							

			Beaverdar	n Creek R	estoration S	ite - UT2A						
Parameter		Design			As-built			MY-1 (2007))		MY-2 (2008))
Dimension - Riffle	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)		15.6			13.3			12.2			13.4	
Floodprone Width (ft)		80.0			39.8			39.8			39.9	
Bankfull Mean Depth (ft)		1.0			0.8			0.8			0.8	
Bankfull Max Depth (ft)		1.4			1.2			1.1			1.2	
Bankfull Cross Sectional Area (ft2)		10.2			10.6			9.6			10.4	
Width/Depth Ratio		10.2			16.6			15.5			17.2	
Entrenchment Ratio		5.9			3.0			3.3			3.0	
Bank Height Ratio		1.0			1.0			1			1.0	
Bankfull Velocity (fps)		5.1										
Pattern												
Channel Beltwidth (ft)	40		55									
Radius of Curvature (ft)	24		30									
Meander Wavelength (ft)	100		120									
Meander Width Ratio	9.8		11.8									
Profile												
Riffle Length (ft)												
Riffle Slope (ft/ft)	0.02		0.0273									
Pool Length (ft)												
Pool Spacing (ft)		57										
Substrate and Transport Parameters												
d16 / d35 / d50 / d84 / d95							26 /	30 / 35 / 53 /	78	< 0.06	3 / 33 / 40 / 6	0 / 83
Reach Shear Stress (competency) lb/f2												
Stream Power (transport capacity) W/m2												
Additional Reach Parameters												
Channel length (ft)			1099			1131			1121			
Drainage Area (SM)			0.1			0.1			0.1			0.1
Rosgen Classification		C/E			С			С			С	
Bankfull Discharge (cfs)		51										
Sinuosity		1.21			1.25			1.22				
BF slope (ft/ft)		0.012			0.015							

APPENDIX E

MORHOLOGY AND HYDRAULIC MONITORING SUMMARY

		Be	averdam Cre	ek Res	toration S	ite : Pro	oject N	lo. D05016	-1				
			Reach	Beave	rdam Cre	ek UT1	(Reac	h 1)					
			Section 1			Cross S		12					
I. Cross-Section Parameters		I	Pool				iffle						
	MY1	MY2	MY3 MY4	MY5	MY1	MY2	MY3	MY4 MY	75				
Dimension													
BF Width (ft)		19.9			13.1	12.8							
Floodprone Width (ft)		75.2			74.6	74.7							
BF Cross Sectional Area (ft2)	33.1	31.8			18.8	17.8							
BF Mean Depth (ft)	1.5	1.6			1.4	1.4							
BF Max Depth (ft)	3.1	2.9			2.1	2.0							
Width/Depth Ratio	14.8	12.4			9.2	9.1							
Entrenchment Ratio		3.8			5.7	5.9							
Wetted Perimeter (ft)	25.1	23.1			16.0	15.6							
Hydraulic Radius (ft)	1.3	1.4			1.2	1.1							
Substrate													
d50 (mm)	< 0.063	0.1			42	50							
d84 (mm)		0.3			75	110							
	Ν	IY-1 (2	.007)		MY-2 (2008)		MY	-3 (2009)	MY-4	(2010)	MY-5 ((2011)
II. Reachwide Parameters	Min	Max	Med	Min	Max	M	ed	Min Ma	x Med	Min Max	Med	Min Max	Med
Pattern													
Channel Beltwidth (ft)	-	-	-	-	-	-	-						
Radius of Curvature (ft)	-	-	-	-	-	-	-						
Meander Wavelength (ft)	-	-	-	-	-	-	-						
Meander Width Ratio	-	-	-	-	-	-	-						
Profile													
Riffle length (ft)	-	-	-	-	-	-	-						
Riffle Slope (ft/ft)	-	-	-	-	0.009	0.0	09						
Pool Length (ft)		-	-	-	-	-	-						
Pool Spacing (ft)		-	-	23	91	5	1						
Additional Reach Parameters													
Valley Length (ft)	540	-	-	540	-	-	-						
Channel Length (ft)		-	-	563	-	-	-						
Sinuosity	1.1	-	-	1.04	-	-	-						
Water Surface Slope (ft/ft)		-	-	-	-	-	-						
BF Slope (ft/ft)		-	-	-	-	-	-						
Rosgen Classification	С	-	-	С	-	-	-						

			Beaver	rdam Cr	eek Resto	oration Site :	: Proj	ect No. D0	5016-1							
				Reach: 1	Beaverda	m Creek UT	Г1 (Re	eaches 2-5)	1							
		Cross S	ection 5			Cross Secti	ion 6			Cross	Section	n 9		Cross S	ection 10)
I. Cross-Section Parameters		Rif				Pool					liffle				ool	
	MY1	MY2 N	MY3 MY4	MY5	MY1	MY2 MY	Y3 M	Y4 MY5	MY1	MY2	MY3	MY4 MY5	5 MY1	MY2	MY3 N	1Y4 MY5
Dimension																
BF Width (ft)	15.2	15.3			23.5	23.6			17.8	17.6			22.2	22.4		
Floodprone Width (ft)	74.9	74.8			75.0	75.0			75.09	75.1			74.9	74.9		
BF Cross Sectional Area (ft2)	23.8	23.6			41.1	41.2			29.26	29.4			44.8	42.7		
BF Mean Depth (ft)	1.6	1.5			1.8	1.7			1.64	1.7			2.0	1.9		
BF Max Depth (ft)	2.3	2.4			3.5	3.4			2.65	2.8			3.3	3.4		
Width/Depth Ratio	9.7	9.9			13.4	13.6			10.83	10.6			11.0	11.8		
Entrenchment Ratio	4.9	4.9			3.2	3.2			4.22	4.3			3.4	3.3		
Wetted Perimeter (ft)	18.3	18.4			27.0	27.1			21.1	21.0			26.3	26.2		
Hydraulic Radius (ft)	1.3	1.3			1.5	1.5			1.4	1.4			1.7	1.6		
Substrate																
d50 (mm)	45	64			0.2	< 0.063			36	40			< 0.063	0.08		
d84 (mm)	85	145			0.45	0.24			72	110			0.7	5		
II. Reachwide Parameters	1	MY-1 (200	07)		MY-2 (2008)		MY-	-3 (2009)			MY-4 (20	10)		MY-5 (2	011)
11. Reachwide Parameters	Min	Max	Med	Min	Max	Med	Ν	fin Max	Me	d	Min	Max	Med	Min	Max	Med
Pattern																
Channel Beltwidth (ft)	-	-	-	-	-	-										
Radius of Curvature (ft)	-	-	-	-	-	-										
Meander Wavelength (ft)	-	-	-	-	-	-										
Meander Width Ratio	-	-	-	-	-	-										
Profile																
Riffle length (ft)	-	-	-	-	-	-								1		
Riffle Slope (ft/ft)	-	-	-	0.009	0.02	0.01										
Pool Length (ft)	-	-	-	-	-	-										
Pool Spacing (ft)	-	-	-	72	144	115										
Additional Reach Parameters																
Valley Length (ft)	2370	_	-	2370	-	-										
Channel Length (ft)	3021	_	-	3023	-	-										
Sinuosity	1.3	_	-	1.3	-	-										
Water Surface Slope (ft/ft)	-	-	-	-	-	-								1		
BF Slope (ft/ft)	-	-	-	-	-	-										
Rosgen Classification	С	-	_	С	-	_										
Rosgen Classification	0		=	Ŭ	-	-					I			1		

		Beaverdam Cr	eek Resto	oration Site : Project No. D0	5016-1			
		Reach: Bea	verdam (Creek UT1 (Reaches 2-5) con	nt'd			
I. Cross-Section Parameters	MY1	Cross Section 13 Pool MY2 MY3 MY4 MY5	MY1	Cross Section 14 Riffle MY2 MY3 MY4 MY5	MY1	Cross Section 15 Riffle MY2 MY3 MY4 MY5	MY1	Cross Section 16 Pool MY2 MY3 MY4 MY5
Dimension	IVI Y I	MIZ MIS MI4 MIS	NI I I	MYZ MYS MYY MYS	MIII	MIZ MIS MIH MIS	NI I I	MYZ MYS MY4 MYS
BF Width (ft)	30.0	28.6	19.1	20.2	26.9	26.0	20.9	21.6
Floodprone Width (ft)		28.0 90.9	75.2	75.2	20.9 77.9	78.0	20.9 52.1	52.1
BF Cross Sectional Area (ft2)	90.9 71.7	90.9 77.6	75.2 37.9	39.4	59.7	62.4	36.8	45.2
BF Mean Depth (ft)	2.4	2.7	2.0	2.0	2.2	2.4	1.8	2.1
BF Max Depth (ft)	5.3	6.6	3.1	3.3	4.1	4.7	3.4	3.7
Width/Depth Ratio	12.6	10.6	9.6	10.3	12.1	10.8	11.8	10.3
Entrenchment Ratio	3.0	3.2	3.9	3.7	2.9	3.0	2.5	2.4
Wetted Perimeter (ft)	34.8	34.1	23.1	24.1	31.3	30.8	24.4	25.8
Hydraulic Radius (ft)		2.3	1.6	1.6	1.9	2.0	1.5	1.8
Substrate								
d50 (mm)	0.3	0.1	30	0.4	-	0.4	-	< 0.063
d84 (mm)	0.8	0.4	70	50	-	1.0	-	0.2
		Reach: Bea	verdam (Creek UT1 (Reaches 2-5) con	nt'd			
		Cross Section 17		Cross Section 18				
I. Cross-Section Parameters		Pool		Riffle				
	MY1	MY2 MY3 MY4 MY5	MY1	MY2 MY3 MY4 MY5				
Dimension								
BF Width (ft)	27.0	23.3	22.5	23.4				
Floodprone Width (ft)	67.2	67.2	80.7	80.6				
BF Cross Sectional Area (ft2)	33.2	36.1	34.7	34.8				
BF Mean Depth (ft)	1.2	1.6	1.5	1.5				
BF Max Depth (ft)	2.5	4.4	2.7	2.7				
Width/Depth Ratio	21.9	15.1	14.6	15.7				
Entrenchment Ratio	2.5	2.9	3.6	3.5				
Wetted Perimeter (ft)	29.5	26.4	25.6	26.4				
Hydraulic Radius (ft)	1.1	1.4	1.4	1.3				
Substrate								
d50 (mm)	-	0.3	-	22				
d84 (mm)	-	0.8	-	45				

		Bea	averdam Cre	ek Rest	toration Si	ite : Project I	No. D05016-1					
				ach: Be	eaverdam	Creek UT1B						
			Section 3			Cross Sectio	on 4					
I. Cross-Section Parameters			Pool			Riffle						
	MY1	MY2	MY3 MY4	MY5	MY1	MY2 MY3	3 MY4 MY5					
Dimension												
BF Width (ft)	15.3	14.8			11.8	11.1						
Floodprone Width (ft)	75.1	75.1			75.0	75.0						
BF Cross Sectional Area (ft2)	16.4	19.4			16.5	15.6						
BF Mean Depth (ft)	1.1	1.3			1.4	1.4						
BF Max Depth (ft)	2.3	3.0			2.3	2.4						
Width/Depth Ratio	14.3	11.4			8.5	7.9						
Entrenchment Ratio	4.9	5.1			6.3	6.8						
Wetted Perimeter (ft)	17.5	17.4			14.6	13.9						
Hydraulic Radius (ft)	0.9	1.1			1.1	1.1						
Substrate												
d50 (mm)	0.16	0.14			< 0.063	0.11						
d84 (mm)	0.42	0.5			0.2	0.3	-					
II. Reachwide Parameters		MY-1 (2			MY-2 (2	,	MY-3		MY-4 (20	,	MY-5 (,
	Min	Max	Med	Min	Max	Med	Min Max	Med	Min Max	Med	Min Max	Med
Pattern												
Channel Beltwidth (ft)	-	-	-	-	-	-						
Radius of Curvature (ft)	-	-	-	-	-	-						
Meander Wavelength (ft)	-	-	-	-	-	-						
Meander Width Ratio	-	-	-	-	-	-						
Profile												
Riffle length (ft)	-	-	-	-	-	-						
Riffle Slope (ft/ft)	-	-	-	-	-	-						
Pool Length (ft)	-	-	-	-	-	-						
Pool Spacing (ft)	-	-	-	-	-	-						
Additional Reach Parameters												
Valley Length (ft)	680	-	-	-	-	-						
Channel Length (ft)	775	-	-	-	-	-						
Sinuosity	1.1	-	-	-	-	-						
Water Surface Slope (ft/ft)	-	-	-	-	-	-						
BF Slope (ft/ft)	-	-	-	-	-	-						
Rosgen Classification	С	-	-	С	-	-						

		Beav	verdam	Creek	x Resto	oration Si	ite : Pro	ject N	o. D05016-1					
				Reac	h: Bea	verdam	Creek U	U T1C						
		Cro	ss Section	on 7			Cross	Section	n 8					
I. Cross-Section Parameters			Riffle					Pool						
	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4 MY5	i				
Dimension														
BF Width (ft)	12.0	13.2				13.6	12.4							
Floodprone Width (ft)		71.2				75.0	75.0							
BF Cross Sectional Area (ft2)		9.5				31.6	30.3							
BF Mean Depth (ft)		0.7				2.3	2.4							
BF Max Depth (ft)		1.1				3.2	3.2							
Width/Depth Ratio		18.4				5.9	5.1							
Entrenchment Ratio		5.4				5.5	6.0							
Wetted Perimeter (ft)		14.6				18.2	17.3							
Hydraulic Radius (ft)	0.7	0.6				1.7	1.7							
Substrate														
d50 (mm)	42	64				< 0.063	< 0.063							
d84 (mm)	75	110				0.23	0.17							
II. Reachwide Parameters			(2007)			MY-2 (MY-3			-4 (2010)	MY-5 (2	
	Min	Max	Me	ed	Min	Max	M	ed	Min Max	Med	Min N	Iax Med	Min Max	Med
Pattern														
Channel Beltwidth (ft)		-	-		-	-	-							
Radius of Curvature (ft)		-	-		-	-	-	-						
Meander Wavelength (ft)		-	-		-	-	-							
Meander Width Ratio	-	-	-		-	-	-							
Profile														
Riffle length (ft)		-	-		-	-	-							
Riffle Slope (ft/ft)		-	-		-	-	-							
Pool Length (ft)		-	-		-	-	-							
Pool Spacing (ft)	-	-	-		-	-	-							
Additional Reach Parameters														
Valley Length (ft)		-	-		-	-	-							
Channel Length (ft)		-	-		-	-	-							
Sinuosity		-	-		-	-	-	-						
Water Surface Slope (ft/ft)		-	-		-	-	-							
BF Slope (ft/ft)		-	-		-	-	-							
Rosgen Classification	С	-	-		С	-	-							

Beaverdam Creek Restoration Site : Project No. D05016-1															
Reach: Beaverdam Creek UT1D															
		Cross Section 11					Cros	s Sectio							
I. Cross-Section Parameters	Pool							Riffle							
	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4	MY5					
Dimension															
BF Width (ft)		15.1				12.7	11.4								
Floodprone Width (ft)		75.6				75.5	75.5								
BF Cross Sectional Area (ft2)		18.9				9.2	9.0								
BF Mean Depth (ft)		1.3				0.7	0.8								
BF Max Depth (ft)		2.2				1.1	1.1								
Width/Depth Ratio		12.0				17.5	14.4								
Entrenchment Ratio		5.0				6.0	6.6								
Wetted Perimeter (ft)		17.6				14.1	13.0								
Hydraulic Radius (ft)	1.2	1.1				0.7	0.7								
Substrate															
d50 (mm)						43	38								
d84 (mm)		0.85				85	60								
II. Reachwide Parameters	MY-1 (2007)				MY-2 (2008)			MY-3 (2009)			MY-4		MY-5 (2		
	Min	Max	Μ	ed	Min	Max	Μ	ed	Min	Max	Med	Min Max	Med	Min Max	Med
Pattern															
Channel Beltwidth (ft)		-	-	-	-	-		-							
Radius of Curvature (ft)		-	-	-	-	-		-							
Meander Wavelength (ft)		-	-	-	-	-		-							
Meander Width Ratio	-	-	-	-	-	-		-							
Profile															
Riffle length (ft)		-	-	-	-	-		-							
Riffle Slope (ft/ft)		-	-	-	-	-		-							
Pool Length (ft)		-	-	-	-	-		-							
Pool Spacing (ft)	-	-	-	-	-	-		-							
Additional Reach Parameters															
Valley Length (ft)		-	-	-	-	-		-							
Channel Length (ft)		-	-	-	-	-		-							
Sinuosity	1.1	-	-	-	-	-		-							
Water Surface Slope (ft/ft)		-	-	-	-	-		-							
BF Slope (ft/ft)		-	-	-	-	-		-							
Rosgen Classification	С	-	-	-	С	-		-							

	Beaverdam Creek Restoration Site : Project No. D05016-1 Reach: Beaverdam Creek UT2A															
]	Reach: 1	Beaverd	am Cree	ek UT2A	L								
			ss Section 1		Section	2										
I. Cross-Section Parameters			Riffle				Pool									
	MY1	MY2	MY3 MY4	MY5	MY1	MY2	MY3 I	MY4	MY5							
Dimension																
BF Width (ft)		13.4			20.1	20.6										
Floodprone Width (ft)	39.8	39.9			40.0	40.0										
BF Cross Sectional Area (ft2)	9.6	10.4			20.4	21.3										
BF Mean Depth (ft)		0.8			1.0	1.0										
BF Max Depth (ft)		1.2			1.9	2.2										
Width/Depth Ratio		17.2			19.8	19.9										
Entrenchment Ratio	3.3	3.0			2.0	1.9										
Wetted Perimeter (ft)		15.0			22.1	22.7										
Hydraulic Radius (ft)	0.7	0.7			0.9	0.9										
Substrate																
d50 (mm)	35	40				< 0.063										
d84 (mm)	53	60				< 0.063										
II. Reachwide Parameters	MY-1 (2007)				MY-2			MY-3		MY-4 (2010)		MY-5 (2011)				
	Min	Max	Med	Min	Max	Me	ed 1	Min	Max	Med	Min N	/lax	Med	Min 1	Max	Med
Pattern																
Channel Beltwidth (ft)	-	-	-	-	-	-										
Radius of Curvature (ft)	-	-	-	-	-	-										
Meander Wavelength (ft)	-	-	-	-	-	-										
Meander Width Ratio	-	-	-	-	-	-										
Profile																
Riffle length (ft)	-	-	-	-	-	-										
Riffle Slope (ft/ft)		-	-	-	-	-										
Pool Length (ft)	-	-	-	-	-	-										
Pool Spacing (ft)	-	-	-	-	-	-										
Additional Reach Parameters																
Valley Length (ft)		-	-	-	-	-										
Channel Length (ft)		-	-	-	-	-										
Sinuosity	1.2	-	-	-	-	-										
Water Surface Slope (ft/ft)		-	-	-	-	-										
BF Slope (ft/ft)		-	-	-	-	-										
Rosgen Classification	С	-	-	С	-	-										

Beaverdam Creek Restoration Site : Project No. D05016-1 Reach: Beaverdam Creek UT2																				
					Re	ach: Bea	verdan	n Cree	k UT2											
	Cross Section 3								n 4			Cros	ss Sect	ion 5		Cross Section 6				
I. Cross-Section Parameters	Riffle							Pool					Riffle			Pool				
	MY1	MY2	MY3	MY4 I	MY5	MY1	MY2	MY3	MY4	MY5	MY1	MY2	MY3	MY4 MY	5 MY1	MY2	MY3 N	AY4 MY5		
Dimension																				
BF Width (ft)		17.3				20.9	20.8				16.6	16.2			14.0	14.4				
Floodprone Width (ft)	40.0	40.0				40.1	40.1				39.9	39.9			28.0	28.8				
BF Cross Sectional Area (ft2)	10.9	11.2				25.8	25.1				22.6	21.4			23.2	24.9				
BF Mean Depth (ft)	0.7	0.7				1.2	1.2				1.4	1.3			1.7	1.7				
BF Max Depth (ft)	1.1	1.1				2.5	2.5				1.9	1.9			2.6	2.6				
Width/Depth Ratio	23.9	26.6				16.9	17.3				12.2	12.3			8.5	8.4				
Entrenchment Ratio	2.5	2.3				1.9	1.9				2.4	2.5			2.0	2.0				
Wetted Perimeter (ft)	17.5	18.6				23.4	23.3				19.4	18.8			17.3	17.9				
Hydraulic Radius (ft)	0.6	0.6				1.1	1.1				1.2	1.1			1.3	1.4				
Substrate																				
d50 (mm)	39	40				< 0.063	< 0.063	3			38	36			< 0.063	< 0.063				
d84 (mm)	59	64				< 0.063	< 0.063	3			59	60			< 0.063	< 0.063				
II. Reachwide Parameters	meters MY-1 (2007) Min Max Med Mi			MY-2 (2008)		MY-3			(2009)		MY-4 (2010)]	MY-5 (2011)					
n. Reactivide Farameters			ed 1	Min	Max	М	led	Min	Max	М	ed	Min	Max	Med	Min	Max	Med			
Pattern																				
Channel Beltwidth (ft)	-	-	-		-	-		-												
Radius of Curvature (ft)	-	-	-		-	-		-												
Meander Wavelength (ft)	-	-	-		-	-		-												
Meander Width Ratio	-	-	-		-	-		-												
Profile																				
Riffle length (ft)	-	-	-		-	-		-												
Riffle Slope (ft/ft)	-	-	-		-	-		-												
Pool Length (ft)	-	-	-		-	-		-												
Pool Spacing (ft)	-	-	-		-	-		-												
Additional Reach Parameters																				
Valley Length (ft)	2470	-	-		-	-		-												
Channel Length (ft)	3142	-	-		-	-		-												
Sinuosity	1.3	-	-		-	-		-												
Water Surface Slope (ft/ft)	-	-	-		-	-		-												
BF Slope (ft/ft)	-	-	-		-	-		-												
Rosgen Classification	С	-	-		С	-		-												